MIT、AIで胎児の動きを精密再現 3Dモデル「Fetal SMPL」を開発

マルチモーダル基盤モデルMIT

診断精度を革新

従来の3D MRIは医師の解釈が困難
胎児のランダムな動きのモデル化が課題
より詳細な胎児の健康診断を支援

技術的コアと精度

MIT CSAILなどが成人モデルから適合
2万件のMRIボリュームで機械学習
23関節を持つ骨格構造を3Dで再現
平均誤差はわずか約3.1ミリメートル

応用と将来性

頭部や腹部サイズの正確な測定が可能
内臓構造の容積モデル化を今後目指す
詳細を読む

マサチューセッツ工科大学(MIT)のコンピューター科学・人工知能研究所(CSAIL)などは、胎児の健康診断を革新する機械学習ツール「Fetal SMPL」を開発しました。これはMRIスキャンデータから、胎児の動きや体形を高精度に再現した詳細な3Dモデルを生成します。従来の3Dスキャン画像は医師にとって解釈が難しく、診断のボトルネックとなっていましたが、本ツールはその課題を解決します。

Fetal SMPLは、成人向けの人体モデリング技術「SMPL」を胎児用に適合させたものです。約2万件のMRIボリュームで訓練され、彫刻のような3D表現を生み出します。モデル内部には23の関節を持つ「キネマティックツリー」と呼ばれる骨格構造があり、これを利用して胎児のリアルなポーズと動きを再現できる点が大きな特長です。

このモデルは実証実験において、非常に高い精度を示しました。これまでに学習していないMRIフレームに対しても、胎児の位置とサイズを正確に予測し、平均誤差はわずか約3.1ミリメートルに留まっています。これにより、医師は胎児の頭部や腹部のサイズなどを正確に測定し、同年齢の健康な胎児のデータと比較した精密な診断が可能になります。

研究チームは現在、Fetal SMPLが表面的な分析に留まっている点を改善するため、内臓などの内部解剖学的な構造をモデル化する「容積(volumetric)」対応を目指しています。この進化により、肝臓や肺などの発達状況もモニタリングできるようになります。本技術は、ヒトの成長と運動が様々な条件でどのように影響を受けるかを長期的に研究する上でも画期的な一歩です。