Verisk、生成AIで保険データ分析を改革。顧客の作業時間を「数日→数分」に短縮

導入事例RAG/ナレッジプロダクティビティ

導入前の主要課題

大量データの手動ダウンロードと照合が必要
差分分析に数時間から数日かかる非効率性
顧客サポートの対応時間が15%も浪費
テストケース分析に3〜4時間費やしていた

GenAIソリューションの核心

Amazon BedrockとClaude 3.5 Sonnetを活用
自然言語で質問可能な会話型UIを導入
RAGとベクトルDBで動的なコンテンツ検索を実現
Bedrock Guardrailsでコンプライアンスを確保

ビジネスインパクト

分析時間を数日から数分へ劇的短縮
手作業不要の自動差分分析が可能に
顧客の意思決定と生産性が向上
サポート負担軽減とオンボーディング効率化
詳細を読む

保険業界向けデータ分析サービス大手のVeriskは、Amazon BedrockとAnthropicのClaude 3.5 Sonnetを活用し、保険会社が抱えるISO格付け変更情報へのアクセス非効率性を劇的に改善しました。生成AIとRAG(検索拡張生成)技術を組み合わせた「Verisk Rating Insights」により、従来数日を要していた複雑なデータ分析わずか数分で完了できるようになり、顧客の生産性と収益性を大きく高めています。

従来、保険会社がISO格付けコンテンツの変更点を把握するには、パッケージ全体を手動でダウンロードし、複数のバージョン間の差分を手作業で比較する必要がありました。この非効率な作業は、顧客側の分析にテストケースあたり3〜4時間を費やさせ、重要な意思決定を遅らせていました。また、Veriskの顧客サポートチームも、これらの非効率性に起因する問い合わせ対応に週15%もの時間を割かざるを得ませんでした。

Veriskは、この課題を解決するため、Amazon Bedrock上のAnthropic Claude 3.5 Sonnetを核とした会話型インターフェースを開発しました。ユーザーは自然言語で「直近2つの申請におけるカバレッジ範囲の変更点は何か?」といったクエリを入力するだけで、システムが即座に関連情報を要約して返答します。

この高精度な応答を可能にしたのが、RAGとAmazon OpenSearch Service(ベクトルデータベース)の組み合わせです。RAG技術により、LLMは巨大なデータからユーザーの質問に特化した関連性の高い情報チャンクのみを動的に検索・取得し、ファイル全体をダウンロードする手間を完全に排除しました。

生成AIソリューションの導入効果は明らかです。顧客側は分析時間が劇的に短縮されたことで、データ検索ではなく価値創造的な意思決定に集中できるようになりました。また、Verisk側では、ユーザーがセルフサービスで解決できるようになった結果、顧客サポートの負担が大幅に軽減され、サポートリソースをより複雑な問題に集中させることが可能になりました。

Veriskは、新しい生成AIソリューションの信頼性を確保するため、Amazon Bedrock Guardrailsによるコンプライアンス管理と独自のガバナンス体制を構築しました。今後は、この基盤を活かし、さらなるクエリ範囲の拡張や、他の製品ラインへのソリューションの横展開・大規模化を進める計画です。