AWSがGPT-OSS活用、エージェント構築加速へ
<span class='highlight'>主要構成要素</span>
<span class='highlight'>システム設計の要点</span>
詳細を読む
AWSは、OpenAIが公開したオープンウェイトの大規模言語モデル(LLM)である「GPT-OSS」を活用し、実用的なエージェントワークフローを構築する詳細なガイドを発表しました。Amazon SageMaker AIでモデルをデプロイし、Amazon Bedrock AgentCoreでマルチエージェントを統合運用するエンドツーエンドのソリューションです。これにより、複雑なタスクを自動化し、企業生産性を大幅に高める道筋が示されました。
このソリューションの核となるのは、高度な推論とエージェントワークフローに優れるGPT-OSSモデルです。MoE(Mixture of Experts)設計のこれらのモデルを、高速な推論フレームワークであるvLLMと組み合わせ、SageMaker AI上にデプロイします。この組み合わせにより、単一のGPU(L40sなど)上でも大規模なモデルを効率的に動かすことが可能となり、運用コストを抑えつつ高性能を実現しています。
現実世界の複雑なアプリケーションには、単なるLLM応答以上のワークフロー管理とツール利用能力が求められます。この課題を解決するため、グラフベースの状態管理フレームワークLangGraphを採用し、複数の専門エージェントの協調を設計しました。これらのエージェントは、Bedrock AgentCore Runtimeという統合レイヤー上でデプロイ・運用されます。
Amazon Bedrock AgentCoreは、エージェントのインフラストラクチャ管理、セッション管理、スケーラビリティといった重労働を抽象化します。開発者はロジックの構築に集中でき、エージェントの状態を複数の呼び出し間で維持できるため、大規模かつセキュアなAIエージェントシステムをサーバーレスで展開・運用することが可能になります。
具体例として、株価分析エージェントアシスタントが構築されました。このシステムは、データ収集エージェント、パフォーマンス分析エージェント、レポート生成エージェントの3つで構成されます。ユーザーの問い合わせに対し、専門化されたコンポーネントが連携し、株価データ収集から技術・ファンダメンタル分析、そして最終的なPDFレポート生成までを一気通貫で実行します。
このエージェントワークフローは、定型的な分析業務を自動化し、アナリストの生産性向上に大きく貢献します。処理時間の大幅な短縮に加え、スキルを持つ専門家が、より複雑な意思決定や顧客との関係構築といった高付加価値業務に注力できる環境を提供します。オープンソースLLMの力を最大限に引き出し、ビジネス価値に変える実践例です。