NVIDIA、AIエージェント導入・活用法を4段階で解説

導入事例エージェント運用
詳細を読む

NVIDIAは2025年9月19日、企業の生産性と収益性を高めるカスタムAIエージェントの導入・活用ガイドを発表しました。AIを戦略的パートナーと位置づけ、(1)タスクに最適なエージェント選択、(2)データ連携による学習、(3)業務部門への展開、(4)ガードレールによる統制という4段階のプロセスを提唱。企業のAI活用を最大化し、組織変革を推進します。

最初のステップは、タスクに最適なAIエージェントを選ぶことです。人間を特定の職務で採用するように、AIも役割に応じて選択・訓練します。例えば、複雑な問題解決には推論エージェント、開発支援にはコード生成コパイロットなど、適切な使い分けが性能やコスト、セキュリティを最適化する上で重要です。

次に、強力なデータ戦略を構築し、AIエージェントを継続的に学習させます。AIは、タスクやビジネスに特化した最新データを得ることで最高の性能を発揮します。組織内の知識資産を活用し、多様な情報源に接続することが、精度の高い応答を生む鍵です。この学習サイクルは「データフライホイール」と呼ばれます。

インフラとデータ戦略が整えば、AIエージェントを各業務部門へ展開します。IDC調査によれば、ITプロセスや事業運営、顧客サービスがAI導入の優先分野です。CRMやERPと連携し、リード認定やサプライチェーン管理を自動化することで、従業員の生産性を高めます。

最後に、AIエージェントに対するガードレール(保護機能)とガバナンスを確立します。従業員にガイドラインが必要なように、AIにも信頼性や正確性を担保し、倫理的境界内で動作させる統制が不可欠です。不適切なトピックへの逸脱防止や、悪意あるプロンプトからの保護などが含まれます。

優れたAIエージェントは汎用品ではなく、目的に応じてカスタム訓練され、継続的に学習します。企業は「AIでどんな事業成果を目指すか」を自問することから始めるべきです。将来的には、あらゆる事業部門が専用AIを持ち、その導入と運用が企業変革を主導するでしょう。