AI、衛星画像で絶滅危惧ハリネズミを救う

導入事例マルチモーダル

AIによる生息地予測

ハリネズミ自体でなく茂みを特定
衛星画像とAIで生息地をマッピング
広範囲の継続的な調査が可能に

保全活動への貢献

激減するハリネズミ個体群の保護
高コストな従来手法の課題を克服
保全計画立案への貢献に大きな期待

活用される技術

シンプルな機械学習モデルを活用
衛星と市民科学データを組み合わせ
詳細を読む

英国ケンブリッジ大学の研究チームが、AIと衛星画像を駆使して絶滅危惧種のハリネズミの生息地を特定する画期的な手法を開発しました。このアプローチは、ハリネズミを直接探すのではなく、彼らがシェルターとして好む「キイチゴの茂み」を宇宙から発見するというもの。広域調査の効率を飛躍的に高め、野生動物の保全活動に新たな道を開く可能性があります。

欧州のハリネズミは、過去10年間で個体数が30~50%も減少しており、保全が急務とされています。しかし、夜行性である彼らの生態調査は、多大な労力とコストがかかるのが実情でした。従来の夜間フィールドワークや市民からの目撃情報に頼る手法では、全国規模での正確な生息地把握には限界があったのです。

今回の新手法では、研究者ガブリエル・マーラー氏らが構築したAIモデルが、欧州宇宙機関(ESA)の衛星画像を解析します。ハリネズミが巣作りや捕食者からの避難場所として利用するキイチゴの茂みの特徴を学習させ、潜在的な生息地を地図上にマッピング。これにより、地上調査を大幅に効率化できると期待されています。

このAIモデルは、ChatGPTのような大規模言語モデルではなく、ロジスティック回帰やk-近傍法といった比較的シンプルな機械学習技術に基づいています。衛星画像データに加え、市民科学プラットフォーム「iNaturalist」から得られる地上での観測データを組み合わせることで、モデルの精度を高めている点も特徴です。

この研究は、AIとリモートセンシング技術が生態系保全に大きく貢献できることを示しています。衛星から特定の植生を特定する技術は、他の野生動物の生息地調査にも応用可能です。保全活動家にとって、広大なエリアの環境を継続的に評価するための強力なツールとなり、より効果的な保護計画の策定につながるでしょう。