AIがバッテリー開発を加速、数千万候補から発見
AIによる探索の高速化
多様なAIアプローチ
次世代への展望
詳細を読む
Microsoftの研究者らがAIを活用し、バッテリーの主要材料であるリチウムの使用量を劇的に削減できる新素材を発見しました。従来は数年かかっていた探索を、AIは3200万以上もの候補からわずか80時間で有望なものを選び出すことに成功。この成果は、AIが材料科学の研究開発を根本から変革する可能性を示しており、電気自動車(EV)やエネルギー貯蔵システムの未来に大きな影響を与えるでしょう。
Microsoftの手法は、まさにAIの真骨頂と言えます。まず、AIモデルが3200万の候補の中から安定して存在しうる分子構造を50万まで絞り込みます。次に、バッテリーとして機能するために必要な化学的特性を持つものをスクリーニングし、候補をわずか800にまで削減。最終的に専門家がこの中から最も有望な物質を特定しました。このAIとの協業により、発見のプロセスが飛躍的に高速化されたのです。
この動きはMicrosoftだけではありません。IBMもAIを駆使し、既存の化学物質の最適な組み合わせを見つけ出すことで、高性能な電解質の開発に取り組んでいます。数億の分子データを学習した化学基礎モデルを用いて有望な配合を予測。さらに、開発したバッテリーのデジタルツイン(仮想モデル)を作成し、物理的な試作前に充放電サイクルによる劣化をシミュレーションすることで、開発期間の短縮とコスト削減を実現しています。
学術界でもAIの活用は急速に進んでいます。ニュージャージー工科大学の研究チームは、AIを用いてリチウムイオン電池を凌駕する可能性のある5つの新材料候補を発見しました。研究者は「AIに材料科学者になる方法を教えている」と語ります。このように、AIはもはや単なる計算ツールではなく、科学的発見のパートナーとなりつつあるのです。
次なるフロンティアは、量子コンピューティングとの融合です。現在のコンピュータではシミュレーションが困難な複雑な化学反応も、量子コンピュータなら高精度にモデル化できると期待されています。そこから得られる正確なデータをAIの学習に用いることで、さらに革新的な材料の発見が加速するでしょう。AIと量子技術の連携が、持続可能な未来を支える次世代バッテリー開発の鍵を握っています。