AIブームの死角、銅不足を微生物が救う

導入事例インフラデータ・プライバシー

AIが招く銅の供給危機

AIデータセンターが銅需要を急増
2031年に年間需要は3700万トン
従来技術では採掘困難な鉱石が増加
インフラ整備のボトルネック

微生物による銅回収技術

低品位鉱石から銅を抽出する微生物
省エネかつ環境負荷の低い新手法
機械学習で最適な微生物を特定
AIが銅を、銅がAIを支える循環構造
詳細を読む

AIの爆発的な普及が、インフラに不可欠な『銅』の深刻な供給不足を招いています。データセンター建設で需要が急増する一方、採掘容易な鉱石は枯渇。この課題に対し、米スタートアップEndolith社は、微生物を利用して低品位鉱石から銅を抽出する革新技術を開発。AIでプロセスを最適化し、AI自身の成長を支える循環を生み出そうとしています。

AIデータセンターはまさに銅の塊です。大規模施設一つで数千トンの銅を消費するとも言われます。この需要急増を受け、世界の年間銅需要は2031年までに約3700万トンに達するとの予測もあります。しかし、埋蔵量の7割以上は従来技術では採掘が難しく、供給のボトルネックが目前に迫っています。

この供給ギャップを埋める鍵として注目されるのが『バイオリーチング』です。Endolith社は、特殊な微生物が銅を溶かす自然プロセスを加速させます。高温での製錬や強力な酸を使う従来法に比べ、エネルギー消費と環境負荷を大幅に削減できるのが利点です。見過ごされてきた低品位鉱石が、新たな資源に変わる可能性を秘めています。

この技術の精度と拡張性を支えているのがAIです。同社は、数千種類もの微生物のゲノムや代謝データを機械学習でモデル化。特定の鉱石や環境条件に対し、最も効果的な微生物の組み合わせを予測し、現場に投入します。これにより、試行錯誤に頼っていた生物学的アプローチを、予測可能でスケーラブルなシステムへと進化させているのです。

『AIが銅回収を効率化し、その銅がAIインフラの成長を支える』という好循環が生まれつつあります。しかし、AI開発の議論は計算能力やエネルギー消費に偏りがちで、銅のような物理的基盤は見過ごされがちです。ソフトウェアの野心に、物理世界の供給が追いついていないのが現実ではないでしょうか。

変圧器の納期遅れでデータセンター計画が停滞するなど、銅不足はすでに現実問題となっています。AI時代の持続的な発展は、優れたアルゴリズムだけでなく、銅という金属によって支えられています。その安定供給に向け、微生物という目に見えない生命体が、次なる飛躍の鍵を握っているのかもしれません。