ノーコードで生命科学のデータ解析を高速化

プロダクティビティ導入事例Watershed Bio

開発の背景

生物学データの指数関数的な増大
データ解析が研究のボトルネック
生物学者と技術者の専門性の乖離

プラットフォームの特長

ノーコードでの複雑なデータ解析
クラウドベースのテンプレート提供
最新AIツールを手軽に利用可能

導入による効果

研究開発サイクルを10倍以上高速化
創薬や臨床研究の意思決定を支援
詳細を読む

マサチューセッツ工科大学(MIT)発のスタートアップ「Watershed Bio」が、プログラミング不要で複雑な生命科学データを解析できるクラウド基盤を開発しました。ゲノム解析などが身近になる一方、膨大なデータを扱える専門家不足が課題でした。同社のノーコードプラットフォームは、生物学者が自らデータを扱い、新薬開発などの研究を加速させることを目指します。

近年、診断・シーケンシング技術のコストが劇的に低下し、研究現場では前例のない量の生物学データが蓄積されています。しかし、そのデータを新薬開発などに活かすには、ソフトウェア技術者の協力が不可欠で、研究のボトルネックとなっていました。

Watershedのプラットフォームは、専門家でなくとも直感的に操作できる点が強みです。ゲノムやタンパク質構造解析など、一般的なデータ種別に対応したワークフローのテンプレートを提供。これにより、研究者はコーディング作業から解放され、本来の科学的探究に集中できます。

さらに、AlphaFoldやGeneformerといった最新のAIツールもプラットフォーム上で手軽に利用できます。科学誌で発表された最先端の解析手法が即座にテンプレートとして追加されるため、研究者は常に業界の最前線で実験を進めることが可能です。

創業者のジョナサン・ワン氏は、かつて金融業界で同様の課題に直面しました。研究者とエンジニアの連携非効率を解決した経験が、この事業の着想に繋がっています。「生物学者をソフトウェアエンジニアにする必要はない」と同氏は語ります。

同社の目標は、科学的発見の速度を10倍から20倍に引き上げることです。すでに大手製薬会社から小規模な研究チームまで、学術界と産業界の双方で導入が進んでいます。研究の次のステップを迅速に判断するための、強力なツールとなっています。