AIが細胞変化を画像で予測、創薬の実験を代替

マルチモーダル基盤モデルMBZUAI

AI創薬の新モデル登場

新AIモデルMorphDiff
遺伝子情報から細胞画像を生成
実験前に薬の効果を可視化

コストと時間を大幅削減

高価な画像化実験を代替
作用機序の特定を高速化
実画像に迫る予測精度を達成

ビジネスへの応用

新薬候補の優先順位付け
既存薬の再利用(リパーパシング)
詳細を読む

アラブ首長国連邦のAI専門大学院大学MBZUAIの研究者らが、創薬プロセスを革新する可能性を秘めた新しいAIモデル「MorphDiff」を開発しました。このモデルは、薬物投与などによって変化する遺伝子の活動パターンをもとに、細胞がどのように変化するかを画像で高精度に予測します。これにより、時間とコストのかかる実験の一部をコンピュータ上のシミュレーションで代替することを目指します。

MorphDiffの核心は、画像生成AIで広く使われる「拡散モデル」技術の応用です。薬などの刺激によってどの遺伝子が活性化・不活性化したかという情報(トランスクリプトーム)を入力するだけで、摂動後の細胞のリアルな顕微鏡画像を生成できます。これにより、実験室で実際に細胞を培養し観察する前に、その結果をプレビューすることが可能になります。

この技術がもたらす最大の利点は、創薬研究における試行錯誤を大幅に削減できる点です。従来、何百万もの候補化合物の効果を一つ一つ画像化して評価するのは不可能でした。しかしMorphDiffを使えば、コンピュータ上で多数の化合物の効果をシミュレートし、有望な候補を効率的に絞り込めます。

生成される画像は単なる想像図ではありません。細胞の質感や内部構造といった数百もの生物学的特徴を正確に捉えており、その統計的分布は実際の実験データと区別がつかないレベルに達しています。この高い忠実性により、薬がどのように作用するかのメカニズム(MOA)を正確に推定するのに役立ちます。

具体的な応用例として、新薬候補のスクリーニングが挙げられます。未知の化合物が生み出す細胞変化の画像を予測し、既知の薬の作用パターンと比較することで、その化合物の潜在的な効果や副作用を迅速に評価できます。これは開発パイプライン全体の効率化に直結するでしょう。

現状では推論速度などの課題も残されていますが、今後の研究開発により、コンピュータ内での実験が現実の実験を強力に補完する未来が近づいています。この技術は、創薬研究のあり方を変え、より早く、より安価に新薬を届けるための重要な一歩となる可能性があります。