AIが特定のモノを識別、MITが新学習法を開発
生成AIの課題
MITの新手法
成果と将来性
詳細を読む
マサチューセッツ工科大学(MIT)の研究チームが、生成AIが特定の「個人化された物体」を正確に識別する新しい学習手法を開発しました。ビデオ映像の連続フレームから文脈を学習させ、物体の特定精度を最大21%向上させることに成功。既存AIの汎用能力を損なうことなく、特定のペットや持ち物の追跡、さらには視覚障害者向け支援技術など、幅広い分野への応用が期待されます。
GPT-5のような最新の視覚言語モデル(VLM)は、「犬」のような一般的な物体は高精度で認識できます。しかし、多くの犬の中から特定の飼い犬「ポチ」だけを見つけ出すような、個体を識別するタスクは苦手としていました。これは、AIが一般的な知識に頼りがちで、提示された文脈から個別の特徴を捉える能力が不足していたためです。
この課題を克服するため、研究チームは新しいデータセットを構築しました。同じ物体が様々な状況で映っているビデオ追跡データを活用。これにより、AIは単一の画像ではなく、連続した文脈の中から対象物を一貫して特定する能力を学びます。これは、人間が状況から物事を判断するプロセスに似たアプローチです。
さらに研究チームは、AIが既存知識に頼って「ずる」をするのを防ぐための工夫を凝らしました。例えば、トラの映像を学習させる際に「トラ」というラベルを使わず、「チャーリー」といった偽名を割り当てました。これにより、AIは名前から推測できなくなり、純粋に映像の文脈情報だけに集中して個体を識別せざるを得なくなります。
この手法で再学習させたモデルは、個人化された物体の位置特定タスクにおいて、最先端システムを上回る性能を示しました。精度は平均で約12%、偽名を用いたデータセットでは最大21%も向上。特に、モデルの規模が大きくなるほど性能向上の幅も広がる傾向が確認されており、今後のAI開発に大きな影響を与えそうです。
この技術は、実社会の様々な場面で役立つ可能性があります。例えば、子どもがなくしやすい持ち物を追跡するシステムや、生態系調査で特定の動物を監視するツール、あるいは視覚障害者が室内で特定の物を見つけるのを助ける支援技術などです。AIがより人間のように文脈を理解する、重要な一歩と言えるでしょう。