マイクロソフト、「待てるAI」実現へ新技術を発表

エージェント運用プロダクティビティ

既存AIエージェントの課題

長期間の監視タスクが苦手
待てずに失敗、またはリソース浪費
メール返信待ちなどの自動化困難

新技術SentinelStep

動的な間隔で状況を監視
コンテキスト管理で長期稼働を実現
指定条件を満たした際に自動実行

性能と将来性

長時間タスクの成功率が大幅向上
常時稼働アシスタント実現への布石
詳細を読む

Microsoft Researchは2025年10月21日、長時間にわたる監視タスクを実行できるAIエージェント技術「SentinelStep」を発表しました。現在のAIエージェントは、メールの返信を待つといった単純な「待機」が苦手という課題がありました。新技術は、動的な監視間隔の調整とコンテキスト管理によりこの問題を解決し、常時稼働するアシスタントの実現に道を開くものです。

「メールの返信が来たら通知する」「株価が目標額に達したら知らせる」。こうしたタスクの自動化は多くの時間を節約しますが、現在のLLMエージェントは不得意です。頻繁に確認しすぎてリソースを浪費するか、数回で諦めてしまうためです。高度な分析やコーディングができる一方で、単純な「待機」ができないという意外な弱点がありました。

SentinelStepは、この課題を2つの工夫で解決します。1つ目は、タスクの性質に応じて確認頻度を賢く調整する「動的ポーリング」です。2つ目は、数日間にわたるタスクでも過去の文脈を失わない「コンテキスト管理」。これにより、エージェントは効率的かつ粘り強くタスクを監視し続けられます。

ユーザーは「アクション(何を確認するか)」「条件(いつ完了か)」「ポーリング間隔(どのくらいの間隔で確認するか)」の3要素を設定するだけで、監視エージェントを構築できます。この仕組みは、同社が開発したプロトタイプ「Magentic-UI」に実装されており、Webブラウジングやコーディングなど、様々なタスクに応用可能です。

その効果は、専用の評価環境「SentinelBench」で実証済みです。SentinelStepを使用しない場合、2時間かかる監視タスクの成功率はわずか5.6%でした。しかし、新技術を適用すると成功率は38.9%へと大幅に向上。長時間になるほど、その信頼性の高さが際立つ結果となりました。

この技術は、単に待つだけでなく、適切なタイミングで行動を起こす、実用的でプロアクティブなAIエージェントへの重要な一歩です。SentinelStepはオープンソースとして公開されており、開発者はすぐにでもこの「忍耐強い」エージェントの構築を試せます。企業の生産性を高める「常時稼働アシスタント」の基盤となる可能性を秘めています。