脳を模倣した省エネAI、MITが新技術

半導体エネルギーMIT

脳に学ぶAIの省エネ化

AIの膨大な電力消費が課題
脳の情報処理・記憶を模倣
データ移動をなくし効率化
持続可能なAI実現への道

新デバイス「イオンシナプス」

信号強度を調整するシナプスの役割
イオンで電気抵抗を精密制御
タングステン酸化物を利用
半導体技術との互換性も視野
詳細を読む

マサチューセッツ工科大学(MIT)の研究チームが、人工知能(AI)の膨大なエネルギー消費問題を解決する新技術を開発しています。人間の脳の情報処理メカニズムを模倣した「ニューロモーフィックコンピューティング」に基づき、消費電力を大幅に削減するデバイスを研究。この成果は、AIの持続可能性を高め、計算コストという産業界の大きな課題に光明を投じるものとして注目されます。

なぜ脳の仕組みが重要なのでしょうか。現在のコンピュータは、情報を処理する場所と記憶する場所が分かれているため、データのやり取りに多くのエネルギーを消費します。一方、人間の脳ではニューロン間の接続部「シナプス」で情報処理と記憶が同時に行われます。この圧倒的な効率性を再現することが、省エネAI実現の鍵となります。

研究の中心は「電気化学的イオンシナプス」と呼ばれる微小デバイスです。研究チームは、タングステン酸化物にマグネシウムイオンを出し入れすることで、電気の通りやすさ(抵抗)を精密に制御。これにより、脳のシナプスが信号の強弱を調整するように、デバイスの特性を自在に「チューニング」できるといいます。

この脳型コンピューティング技術は、AIの運用コストを劇的に下げる可能性を秘めています。特に大規模言語モデルの学習や運用にかかる電力は、企業の収益性を圧迫する要因となりつつあります。MITの研究は、エネルギーという制約からAIを解放し、より広範な社会実装を後押しする画期的な一歩と言えるでしょう。