NVIDIA、物理AI開発を加速する新基盤モデル

物理AI開発の課題

現実世界のデータ収集コスト
開発期間の長期化
多様なシナリオの網羅性不足

新Cosmosモデルの特長

テキスト等から動画世界を生成
気象や照明など環境を自在に変更
従来比3.5倍小型化し高速化

期待されるビジネス効果

開発サイクルの大幅な短縮
AIモデルの精度と安全性の向上
詳細を読む

NVIDIAは2025年10月29日、物理AI開発を加速させるワールド基盤モデルNVIDIA Cosmos」のアップデートを発表しました。ロボットや自動運転車の訓練に必要な多様なシナリオのデータを、高速かつ大規模に合成生成する新モデルを公開。これにより、開発者は現実世界でのデータ収集に伴うコストや危険性を回避し、シミュレーションの精度を飛躍的に高めることが可能になります。

ロボットなどの物理AIは、現実世界の多様で予測不能な状況に対応する必要があります。しかし、そのための訓練データを実世界で収集するのは、莫大な時間とコスト、そして危険を伴います。特に、まれにしか起こらない危険なシナリオを網羅することは極めて困難です。この「データ収集の壁」を打ち破る鍵として、物理法則に基づいた合成データ生成が注目されています。

今回のアップデートでは、2つの主要モデルが刷新されました。「Cosmos Predict 2.5」は、テキストや画像動画から一貫性のある仮想世界を動画として生成します。一方「Cosmos Transfer 2.5」は、既存のシミュレーション環境に天候や照明、地形といった新たな条件を自在に追加し、データの多様性を飛躍的に高めます。モデルサイズも従来比3.5倍小型化され、処理速度が向上しました。

これらの新モデルは、NVIDIAの3D開発プラットフォーム「Omniverse」やロボットシミュレーション「Isaac Sim」とシームレスに連携します。開発者は、スマートフォンで撮影した現実空間からデジタルツインを生成し、そこに物理的に正確な3Dモデルを配置。その後、Cosmosを用いて無限に近いバリエーションの訓練データを生成する、という効率的なパイプラインを構築できます。

すでに多くの企業がこの技術の活用を進めています。汎用ロボット開発のSkild AI社は、ロボットの訓練期間を大幅に短縮。また、配送ロボットを手がけるServe Robotics社は、Isaac Simで生成した合成データを活用し、10万件以上の無人配送を成功させています。シミュレーションと現実のギャップを埋めることで、開発と実用化のサイクルが加速しています。

NVIDIAの今回の発表は、物理AI開発が新たな段階に入ったことを示唆します。合成データ生成の質と量が飛躍的に向上することで、これまで困難だった複雑なタスクをこなすロボットや、より安全な自動運転システムの開発が現実味を帯びてきました。経営者やリーダーは、この技術革新が自社の競争優位性にどう繋がるか、見極める必要があります。