AI開発、コストより速度優先の潮流
詳細を読む
AI開発の最前線で、企業の優先順位が変化しています。米国の食品宅配「Wonder」やバイオテクノロジー企業「Recursion」などの先進企業は、AIの計算コストよりも、展開速度や遅延、柔軟性、処理容量といった課題を重視。コストを理由に導入をためらうのではなく、いかに速く、持続的にAIを事業展開できるかが、新たな競争力の源泉となりつつあります。
この潮流を象徴するのが、Wonder社の事例です。同社のAI利用コストは、1注文あたり数セントと事業全体から見ればごく僅か。しかし、急成長に伴い、当初「無制限」と想定していたクラウドの処理容量が逼迫し始めました。予想より早くインフラ増強の必要性に迫られており、コストよりも物理的な制約が大きな経営課題となっています。
Wonder社にとって、AI関連の予算策定は「科学というより芸術」に近いと言います。新しいモデルが次々と登場するため、予測が困難なためです。特に、大規模モデル利用時のコストの50〜80%は、リクエストごとに同じ情報を再送信する「コンテキスト維持」に費やされることも。常に変化する状況下で、柔軟な予算執行と技術活用のバランスが求められます。
一方、Recursion社はハイブリッドインフラでこの課題に対応しています。同社は数年前に自社でGPUクラスタを構築。クラウド事業者が十分な計算資源を供給できなかったためですが、結果的にこれが功を奏しました。現在も大規模なモデル学習はオンプレミスで、比較的小さな推論などはクラウドで実行するなど、柔軟な使い分けを実現しています。
コスト面でも、このハイブリッド戦略は有効です。Recursion社によれば、大規模なワークロードをオンプレミスで処理する場合、クラウドに比べて「控えめに見積もっても10倍は安価」になるとのこと。5年間の総所有コスト(TCO)では半額に抑えられるケースもあるようです。もちろん、小規模な利用であればクラウドの方がコスト競争力があります。
両社の事例から見えてくるのは、経営層の心理的なコミットメントの重要性です。Recursion社のCTOは「計算資源への投資をためらうと、チームはクラウド費用を恐れてリソースを使わなくなり、結果としてイノベーションが阻害される」と警鐘を鳴らします。AI時代を勝ち抜くには、コストを管理しつつも、革新を止めないための大胆な投資判断が不可欠です。