AIの意外な弱点、アナログ時計読み取りに苦戦
詳細を読む
マドリード工科大学などの研究チームが、最新のマルチモーダルAI(MLLM)がアナログ時計の時刻を正確に読み取れないことを明らかにしました。この失敗は、針の空間認識や未知の状況への汎化能力の低さといった、AIの根深い課題を浮き彫りにしています。
研究チームは合成された時計画像で4つの主要MLLMをテストしたところ、全モデルが初期段階で失敗。追加学習後も、見たことのない新しい画像に対して性能は再び低下し、AIが学習データ以外の状況に対応できない「汎化の壁」を示しました。
失敗の要因は、針の空間的な向きを正確に特定できない点にあります。さらに、針の先端に矢印が付くなど予期せぬ形状変化には特に脆弱で、人間がサルバドール・ダリの歪んだ時計を容易に解釈するのとは対照的な結果となりました。
特に重要な発見は、エラーのカスケード効果です。モデルが針の形状認識でつまずくと、それが原因で空間的な向きの誤差も増大することが判明しました。時刻の読み取りは、複数の認識プロセスを同時に正しく処理する必要がある、AIにとって複雑なタスクなのです。
この一見些細な失敗は、より深刻なリスクを示唆します。医療画像の解析や自動運転の物体認識など、人命に関わる分野で同様のエラーが起きれば、重大な結果を招きかねません。AIの信頼性確保には、多様なシナリオでの徹底的な検証が不可欠だと、研究は警鐘を鳴らします。
