AIは単一の現実に収斂、MIT新仮説

プラトン的表現仮説

多様なAIが共通の内部表現を獲得
言語・画像・音は現実の「影」
モデルは単一の世界モデルに収斂

知能の本質を探る研究

人間のような知能の計算論的解明
ラベルなしで学ぶ自己教師あり学習
性能目標より基礎原理の発見を重視
詳細を読む

マサチューセッツ工科大学(MIT)のフィリップ・イゾラ准教授が、AIの知能に関する新たな仮説を提唱し注目を集めています。言語や画像など異なるデータを学習する多様なAIモデルが、最終的に現実世界の共通した内部表現に収斂するという「プラトン的表現仮説」です。人間のような知能の基本原理を解明する上で重要な一歩となる可能性があります。

この仮説は、古代ギリシャの哲学者プラトンの「イデア論」に着想を得ています。私たちが知覚する言語や画像、音は、物理的な実体である「現実」が落とす影に過ぎません。様々なAIモデルは、これらの異なる「影」から学習することで、その背後にある共通の「現実」、すなわち普遍的な世界モデルを再構築しようとしている、とイゾラ氏は説明します。

この考え方は、AI開発の方向性に大きな示唆を与えます。個別のタスクで高い性能を出すだけでなく、異なる種類のデータを統合的に学習させることで、より汎用的で人間の思考に近いAIが実現できるかもしれません。特定のベンチマークを追い求めるのではなく、知能の「基礎原理」を理解しようとするアプローチです。

仮説を支える重要な技術が「自己教師あり学習」です。人間が用意したラベル付きデータに頼らず、AIがデータそのものの構造から自律的に特徴を学ぶ手法を指します。これにより、膨大なデータから世界の正確な内部表現を効率的に構築できると期待されています。

イゾラ氏は、認知科学からキャリアをスタートさせ、AIの計算論的アプローチに移行した経歴を持ちます。彼の研究室では、短期的な成果よりも「新しく驚くべき真実の発見」を重視する「ハイリスク・ハイリターン」な探求を続けています。この姿勢が、分野の常識を覆す可能性を秘めているのです。

イゾラ氏は汎用人工知能(AGI)の到来はそう遠くないと見ており、「AGI後の未来で世界にどう貢献できるか」を問い始めています。経営者エンジニアにとって、現在のAI技術の先にある知能の本質と、それがもたらす社会変革について思考を巡らせるべき時期に来ているのかもしれません。