GitHub Copilot、ツール厳選とAIルーティングで高速化

ツール過多による性能低下の解消

選択肢過多はAIの推論速度を低下
精度悪化やエラー増加の原因にもなる

埋め込み技術による動的制御

コアツールを40個から13個に厳選
埋め込みモデルでツールを最適化
文脈に応じ必要な機能を動的に提示

実証された速度と精度の向上

応答時間を平均400ミリ秒短縮
ツール適合率が94.5%に向上
詳細を読む

GitHubは11月19日、VS Code向けCopilotの性能向上策を発表しました。ツールの選択肢を絞り込み、AIによる動的なルーティング制御を導入することで、応答速度とタスク解決率を大幅に改善しています。

AIエージェントにとって、使用可能なツールが多すぎることは必ずしも利点ではありません。選択肢が数百に及ぶと、モデルの計算リソースを圧迫し、推論の遅延や誤ったツールの選択を引き起こす原因となっていたのです。

この課題に対し、同社はデフォルトで提示するツールを40個から13個の「コアツール」に削減しました。頻度の低い機能は「仮想ツール」としてグループ化し、必要な場合のみ展開する階層構造を採用しています。

さらに、独自の埋め込みモデルを活用した「適応型ルーティング」を実装しました。ユーザーの指示とツールの機能記述をベクトル化して照合し、文脈に最も適したツール群を瞬時に特定してモデルに提示します。

この新方式により、不要な探索が減り、応答レイテンシは平均400ミリ秒短縮されました。また、必要なツールを正しく認識する「カバレッジ率」は、従来の静的リスト方式の69%から94.5%へと飛躍的に向上しています。

GitHubは今後、単なるツール選択の最適化にとどまらず、長期的な記憶や文脈理解を持つエージェントの開発を進めます。より複雑なタスクを自律的にこなすAIの実現に向け、技術革新を続ける方針です。