説明可能なAIが自動運転を変革、判断可視化で安全性向上

乗客の介入促すリアルタイム説明

AIの判断根拠はブラックボックス
誤認識時に理由を示し人間介入を支援
標識誤読などの事故リスクを低減
個人の能力に応じた情報提供が課題

開発効率化と法的責任の明確化

SHAP分析で重要因子を特定
シミュレーションモデルの弱点発見
事故時の法的責任や動作検証に活用
XAIは自動運転の必須機能
詳細を読む

カナダのアルバータ大学の研究チームは、自動運転車の安全性向上には「説明可能なAI(XAI)」の導入が不可欠であるとする研究結果をIEEE論文誌で発表しました。現在のAIモデルの多くは意思決定プロセスが不透明なブラックボックスですが、XAIにより判断理由を可視化することで、技術的なデバッグを容易にしつつ、ユーザーの信頼を獲得することが可能になります。

特に重要なのが乗客へのリアルタイムな情報提供です。AIが速度標識を誤認識して加速する際、その根拠を即座に示せれば、乗客は異常を察知し手動介入できます。研究では、乗客の知識や状況に応じ、音声や視覚など最適な手段で説明を提供する重要性が指摘されています。

開発や法的検証でもXAIは威力を発揮します。SHAP分析で判断に寄与した特徴量を特定すれば、モデルの最適化が可能です。また、事故時に「歩行者を認識していたか」などを検証できるため、説明機能は法的責任を明確化する上でも中核技術となります。