アリババ新技術、AIが自ら学習データ生成し性能3割増
独自データ作成の壁を突破
3つの自己進化メカニズム
詳細を読む
アリババのTongyi Labは、AIエージェントが自ら学習データを生成し能力を高める新フレームワーク「AgentEvolver」を開発しました。この技術は、大規模言語モデル(LLM)の推論能力を活用して自律的な学習ループを構築するもので、従来の強化学習に比べてツール操作のパフォーマンスを約30%向上させることが実証されています。企業が独自のソフトウェア環境にAIを導入する際、最大の障壁となるデータ作成コストを劇的に下げる技術として注目されます。
これまで、AIエージェントに特定のソフトウェアを操作させるには、膨大なコストがかかっていました。従来の強化学習では、人間が手作業でタスク例を作成する必要があり、特に社内専用システムなどの未知の環境では学習データそのものが存在しないことが多いためです。また、試行錯誤による学習は計算リソースを大量に消費します。「AgentEvolver」は、モデル自身に学習プロセスを委ねることで、これらのデータ不足と高コストの課題を一挙に解決しようとしています。
この自己進化プロセスの核となるのが、「自己問答(Self-questioning)」というメカニズムです。これは、AIが新しいアプリケーションを探索し、機能の境界を理解した上で、自らトレーニング用のタスクを生成する機能です。研究者はこれを「モデルをデータ消費者からデータ生産者へと変える」と表現しています。人間が事前にタスクを設計しなくとも、AIが環境に合わせて多様な課題を作り出し、それを解くことでスキルを磨いていくのです。
学習効率を高めるために、「自己ナビゲーション(Self-navigating)」と「自己帰属(Self-attributing)」という機能も組み込まれています。自己ナビゲーションは、過去の成功や失敗の経験を記憶し、存在しない機能を使おうとするなどの無駄な動作を防ぎます。一方、自己帰属は、最終的な結果だけでなく、作業の各ステップが成功にどう寄与したかをLLMが詳細に評価します。これにより、AIは単に正解するだけでなく、プロセスの正しさも学習できるようになります。
実際の性能評価でも、その効果は明らかです。Qwen2.5モデルをベースにした実験では、複雑なツール操作を要するベンチマークにおいて、従来手法と比較してスコアが平均で27.8%〜29.4%向上しました。特に、自律的に生成された多様なタスクが、モデルの推論能力と実行能力を大きく引き上げています。これは、少量のデータからでも高品質な学習が可能であることを示しており、企業にとっては専用AIアシスタント開発のハードルが大きく下がることになります。