AI応答速度と効率を劇的改善する「連続バッチ」技術

LLM運用の課題と解決策

生成AIの計算負荷と遅延の解消
従来のパディングによる無駄を排除

核心となる技術要素

KVキャッシュで再計算を回避
パディング不要のRagged batching
長文を分割するChunked prefill

実装によるビジネス効果

推論スループットの最大化
GPUリソースの完全稼働
大規模同時接続への柔軟な対応
詳細を読む

生成AIの実装において、応答遅延と膨大なGPUコストは経営上の大きな課題です。解決の切り札となるのが、最新の推論最適化技術Continuous batchingです。本稿ではHugging Faceの技術解説を基に、AIインフラ生産性を最大化する本技術の全貌を紐解きます。

LLMの核となるAttention機構は計算コストが高く、通常は過去の計算結果をKVキャッシュとして保存し再計算を防ぎます。しかし、複数リクエストを同時処理する際、従来のバッチ処理では長さの不揃いな文章を扱うために非効率が発生していました。

最大の問題は、長さを揃えるための「パディング(穴埋め)」による無駄です。無意味なデータ処理でGPUメモリを浪費し、さらに長い処理の終了待ちが発生します。これはシステム全体のスループットを低下させ、コスト対効果を悪化させる主因でした。

新技術はRagged batchingを採用し、この常識を覆します。パディングなしで複数リクエストを連結し、Attentionマスクで干渉を防ぎます。空いたリソースへ即座に次のタスクを割り当て、GPU稼働率を限界まで高めることが可能になります。

加えて、長い入力を分割処理するChunked prefillを組み合わせます。これにより、メモリ不足を防ぎつつ、短い生成処理の合間に長い読込処理を隙間なく実行します。動的なスケジューリングにより、常に最適な順序で計算が行われます。

結果として「初期読込」と「文章生成」を混在させ、処理能力を劇的に向上させます。これはChatGPT等の大規模基盤であり、AIサービスの収益性と体験を両立させるため、エンジニアのみならずリーダー層も理解すべき必須概念です。