元テスラAI責任者が示す次世代AI基盤の正体

複数AIによる合議制システム

複数モデルが議論し回答を統合する仕組み
AIが相互に品質を批評し合う品質管理
OpenRouterによるベンダーロックイン回避

「使い捨てコード」と企業課題

AI生成でコードは「儚い使い捨て」
ライブラリ依存からプロンプト主体への転換
企業利用には認証・ガバナンスが不足
AIと人間で「良い回答」の基準が乖離
@ai_databaseのXポスト: 開発者たちはLLMに「正しく機能するコード」を作らせることにこだわりがちです。 しかし、そのシステムが安全かどうかや、他のツールと連携できるかといった使い勝手の部分は、あまりケアされてきていないことが浮き彫りになってきています。… pic.twitter.com/ERujfmd…
詳細を読む

元テスラやOpenAIで活躍したアンドレイ・カルパシー氏が、2025年11月末に「LLM Council」を公開しました。これは複数のAIモデルが議論して回答を導くツールですが、企業にとって重要なのは、その設計思想が示す「次世代AI基盤のあり方」です。

仕組みは画期的です。ユーザーの質問に対し、GPT-5.1やClaudeなどの最新モデルが並列で回答案を作成。それらを相互に批評させた上で、議長役のAIが最終的な一つの回答にまとめ上げます。人間による合議制をデジタル空間で再現しました。

特筆すべきは「コードは儚いもの」という哲学です。AIに大半のコードを書かせる手法を用い、複雑なライブラリに頼らず、必要に応じてAIが書き直せばよいと提唱。これはソフトウェア開発の常識を覆すアプローチといえるでしょう。

企業システムの観点では、特定のAIベンダーに依存しない「薄い」アーキテクチャが参考になります。OpenRouterを介すことで、モデルを交換可能な部品として扱えるため、技術進化が速いAI市場でのロックインリスクを回避できます。

一方で、企業導入に向けた課題も明確になりました。認証機能やデータ保護、監査ログといったガバナンス機能は実装されていません。これらは商用プラットフォームが提供する付加価値であり、内製と外部調達の境界線を示しています。

興味深い発見として、AIと人間の評価基準のズレも確認されました。AIは冗長な回答を好む傾向がありましたが、カルパシー氏は簡潔な回答を支持。AIによる自動評価に依存するリスクを示唆しており、人間の目による確認が依然として重要です。