ホテル写真とAIで人身売買被害者を特定・救出へ
詳細を読む
米セントルイス大学のAbby Stylianou教授らが開発したアプリ「TraffickCam」が、AIを活用して人身売買被害者の捜索に革新をもたらしています。旅行者が投稿したホテルの部屋の写真をデータベース化し、捜査機関が被害者の写真と照合して撮影場所を特定するための支援ツールです。
人身売買業者は被害者の写真をオンライン広告に利用しますが、背景となるホテルの一室から場所を特定するのは困難でした。ネット上のホテル写真はプロが撮影した「完璧な広告写真」であり、実際の現場写真(散らかり、照明不足)とは見た目が大きく異なるドメインギャップがAIの精度を下げていました。
この課題に対し、TraffickCamは一般ユーザーの力を借ります。旅行者が自身の宿泊した部屋を撮影・投稿することで、被害者の写真に近い「リアルな画像データ」を収集。これを教師データとしてAIモデルを訓練することで、照合精度を劇的に向上させました。
システムはニューラルネットワークを用いて画像の特徴を数値ベクトル化し、類似画像を検索します。また、被害者が写っている画像から人物を消去する際、単に塗りつぶすのではなく、AIで自然な背景テクスチャを補完(インペインティング)することで、検索精度を高める技術も採用されています。
このシステムは全米行方不明・被搾取児童センター(NCMEC)で実際に運用されています。ある事例では、ライブ配信されていた虐待動画のスクリーンショットからホテルを即座に特定し、警察が急行して子供を救出することに成功しました。AIとクラウドソーシングが社会正義を実現する好例といえます。