Anthropic、長期AIエージェントの「記憶」問題を解決

コンテキスト制限の壁

AIは長時間稼働で指示や文脈を忘却
複雑なタスクは単一窓で完了不能

2段階の解決アプローチ

環境設定を行う初期化エージェント

人間の作業フローを模倣

セッション間で構造化データを引き継ぐ
テスト自動化でバグ修正能力も向上
詳細を読む

2025年11月28日、米AnthropicはAIエージェントが長時間稼働する際に文脈を失う問題を解決する新たな手法を発表しました。同社のClaude Agent SDKに実装されたこのアプローチは、エージェントが複数のセッションをまたいで記憶を保持し、大規模な開発プロジェクトなどの複雑なタスクを完遂できるようにするものです。

同社が提案するのは、役割を分担する「2段階アプローチ」です。まず「初期化エージェント」が開発環境をセットアップしてログを記録し、次に「コーディングエージェント」が実作業を行います。重要なのは、各作業セッションの終了時に構造化された更新情報(アーティファクト)を残し、次のセッションへ確実にバトンタッチする点です。

これまでAIエージェントは、基盤モデルの「コンテキストウィンドウ(扱える情報量)」の制限により、長時間稼働すると初期の指示を忘れたり、挙動が不安定になったりする課題がありました。Anthropicの新手法は、人間のソフトウェアエンジニアが日々の業務で行う「段階的な進捗管理」に着想を得ており、記憶の断絶を防ぐことに成功しています。

この手法により、エージェントは「一度にすべてをやろうとして失敗する」ことや「中途半端な状態で完了と誤認する」ことを回避できます。また、コーディングエージェントにはテストツールも組み込まれており、コード単体では発見しにくいバグの特定と修正能力も向上しています。

現在はWebアプリ開発での実証が中心ですが、Anthropicはこの手法が科学研究や財務モデリングなど、他の長期タスクにも応用可能であるとしています。AIエージェントが単なる対話相手から「長期的なプロジェクトを任せられるパートナー」へと進化するための、重要な技術的マイルストーンとなるでしょう。