AI実用化の核心は「可観測性」 SRE原則で信頼性を担保

成果起点の設計と3層の監視構造

モデル精度よりビジネス成果の定義を最優先
プロンプト・制御・成果の3層テレメトリーを構築
全決定を追跡可能なトレースIDで紐付け

SRE原則の適用と短期実装計画

正確性や安全性のSLOとエラー予算を設定
予算超過時は人間によるレビューへ自動誘導
2回のスプリント、計6週間で基盤構築を完了
CI/CDに評価を組み込み継続的な監査を実現
詳細を読む

生成AIを実験から本番運用へ移行させる企業が増える中、SRE(サイト信頼性エンジニアリング)の原則に基づく「可観測性」の欠如が深刻な課題となっています。米国の最新知見によれば、モデルの精度よりもビジネス成果を優先し、システム全体の挙動を可視化することが、信頼性とガバナンスを確立し、AIを成功させる唯一の道です。

多くのAIプロジェクトはモデル選定から始まりますが、これは順序が逆です。まず「処理時間の短縮」や「解決率の向上」といったビジネス成果を明確に定義し、その達成に最適なモデルやプロンプトを後から設計する必要があります。成果から逆算することで、無意味な技術検証を避けられます。

信頼性の確保には、マイクロサービスと同様に構造化された監視スタックが不可欠です。具体的には、入力されたプロンプト、適用された安全性ポリシー、そして最終的なビジネス成果という3層のテレメトリーを構築します。これらを共通のIDで紐付けることで、AIの判断プロセス全体が監査可能になります。

ソフトウェア運用を変革したSREの手法は、AI運用にも極めて有効です。正確性や安全性に対してSLO(サービスレベル目標)を設定し、エラー予算を管理します。基準を下回った場合や不確実な回答は、自動的に人間によるレビューへ切り替える仕組みを導入し、リスクを制御します。

導入に際して、半年がかりの壮大なロードマップは不要です。最初の3週間でログ基盤を作り、続く3週間でガードレールを設置する2回のスプリントを実行してください。わずか6週間の集中開発で、ガバナンス上の疑問の9割に答えられる「薄くても強力な監視層」が完成します。

評価プロセスは特別なイベントではなく、日常業務に組み込むべきです。継続的な自動テストでモデルのドリフト(性能劣化)を検知しつつ、トークン消費量やレイテンシを常時監視します。可観測性を徹底することで、予期せぬ請求を防ぎ、コスト管理を確実なものにできます。