Hugging Faceがv5発表、PyTorch特化と相互運用性強化

開発効率を高める構造改革

モデル定義をモジュール化し保守性向上
開発基盤をPyTorchへ完全一本化

実用性を極めた学習・推論

大規模な事前学習への対応を強化
OpenAI互換の推論サーバー機能導入
低精度の量子化を標準機能として統合

エコシステムをつなぐハブへ

外部推論エンジンとの連携を円滑化
ローカル実行オンデバイス対応
詳細を読む

Hugging Faceは、AI開発のデファクトスタンダードであるライブラリの最新版「Transformers v5」を発表しました。本バージョンでは「相互運用性」と「シンプルさ」を最優先し、コード構造のモジュール化やPyTorchへのバックエンド一本化を断行。急速に拡大するAIエコシステムにおいて、エンジニアがより効率的に学習・推論を行えるよう、量子化の標準サポートや外部ツールとの連携を強化した大型アップデートです。

前バージョンのリリースから5年、Transformersは爆発的な成長を遂げました。1日あたりのインストール数は2万回から300万回へと急増し、累計ダウンロード数は12億回を突破。サポートするモデルアーキテクチャも40種類から400種類以上へと拡大しており、AI技術の民主化と普及を支える重要なインフラとしての地位を確立しています。

v5の最大の焦点は「シンプルさ」の追求です。開発チームは「コードこそが製品である」という哲学のもと、モデル定義のモジュール化を推進。複雑化していたコードベースを整理し、新しいモデルの追加や保守を容易にしました。これにより、コミュニティによる貢献プロセスが簡素化され、最新モデルへの対応速度がさらに向上します。

技術的な大きな転換点として、バックエンドをPyTorchに一本化します。TensorFlowやFlaxのサポートを縮小し、PyTorch財団との連携を深めることで、パフォーマンスと安定性を最大化します。同時に、JAXエコシステムとの互換性は維持し、多様な開発環境やニーズに応える柔軟性も確保しています。

実用面では、推論機能と量子化が大幅に強化されました。新たにOpenAI互換のAPIを持つ「transformers serve」を導入し、手軽な推論サーバー構築が可能に。また、8-bitや4-bitといった低精度モデルの量子化を「第一級市民」として扱い、リソース制約のある環境でも高性能なモデルを効率的に扱えるようになります。

最終的な目標は、あらゆるAIツールとのシームレスな連携です。UnslothやAxolotlでの学習から、vLLMやllama.cppを用いた推論・ローカル実行まで、Transformers v5はエコシステムのハブとして機能します。この高い相互運用性により、開発者は最適なツールを自由に組み合わせ、生産性を最大化できるでしょう。