IBM CEO「現行AIでAGI到達せず」量子と計算効率化に勝機
詳細を読む
米IBMのArvind Krishna CEOがThe Vergeのインタビューに応じ、過熱するAI投資とAGI(汎用人工知能)待望論に対して、エンジニアリング視点から冷静な分析を提示しました。彼は現在のLLM(大規模言語モデル)技術の延長線上でAGIに到達する確率は極めて低いと断言。MicrosoftやOpenAIのような「AGIへの賭け」とは一線を画し、B2B領域での着実な実装と、次世代計算基盤への長期的投資を優先する姿勢を鮮明にしています。
市場で囁かれる「AIバブル崩壊」の懸念に対し、Krishna氏は否定的です。彼はムーアの法則に加え、チップアーキテクチャの刷新(Groqなどの推論特化型など)とソフトウェア最適化を組み合わせることで、今後5年間で計算コスト対効果が最大1000倍改善されると独自の試算を披露。この劇的な効率化がインフラ投資の正当性を支え、B2B領域でのAI活用を経済的に合理化すると説きます。
一方で、シリコンバレーを席巻するAGIブームには懐疑的です。LLMは本質的に確率論的なシステムであり、AGIに不可欠な「決定論的な知識」や論理的推論能力が欠けていると指摘します。現在のAIは生産性向上に極めて有用ですが、真のAGI到達にはLLMとは異なる新たな技術的ブレイクスルーが必要であり、現行技術への過度な期待を戒めました。
IBMがAIの次の勝負所と定めるのが量子コンピューティングです。Krishna氏は量子プロセッサを、CPUやGPUを置き換えるものではなく、特定の難問を解決する「QPU」として定義しています。彼は今後3〜5年以内に量子計算が実用段階(Utility scale)に達し、既存のスーパーコンピュータでは不可能な材料探索やリスク計算を処理することで、数千億ドル規模の市場価値を生むと予測しています。
AIによる雇用への影響についても、前向きな姿勢を崩しません。社内で生成AIを導入した結果、開発チームの生産性が45%向上した実績を挙げつつ、これを人員削減ではなく事業拡大の好機と捉えています。AIは「初心者を熟練者に変えるツール」であり、生産性が高まればより多くの製品を開発できるため、エンジニアの採用を積極的に継続する方針です。