AIの死角を消す多様性:MS幹部が語るWiML20年の教訓

少数派から巨大組織へ

WiML設立20周年、NeurIPSと併催
同質的な組織は技術的な盲点リスクを生む

責任あるAIと生成AIの評価

責任あるAIは現場の複雑な課題から進化
生成AI評価には社会科学的な測定手法が必要

成果を最大化する思考法

AIへの過度な依存や主体性の喪失を懸念
完璧主義を捨て未完成でも成果を共有せよ
詳細を読む

Microsoft Researchの幹部研究者であり、「Women in Machine Learning(WiML)」の共同創設者でもあるジェン・ウォートマン・ヴォーン氏とハンナ・ウォラック氏が、同団体の20周年を記念して対談を行いました。AI分野における多様性の欠如がもたらす技術的なリスクや、生成AI時代における評価指標の難しさについて、自身のキャリアを振り返りながら語っています。技術リーダーやエンジニアにとって、組織づくりとAIガバナンスのヒントとなる内容です。

2005年当時、世界最大級のAI国際会議「NeurIPS」の参加者はわずか600人程度で、女性研究者は極めて少数でした。孤独を感じたヴォーン氏らは、手書きのリストからWiMLを立ち上げ、現在では数千人規模の巨大コミュニティへと成長させました。彼女たちは、組織の同質性が技術的な盲点を生み、ゲートキーピングや有害なシステム開発につながると指摘します。多様な視点を取り入れることは、単なる公平性の問題ではなく、AIシステムのリスクを低減し、品質を高めるための必須条件なのです。

両氏は、キャリアを通じて「責任あるAI(Responsible AI)」の確立に尽力してきました。当初は数理的な理論に関心を持っていましたが、現場の課題に向き合う中で、人間とAIの相互作用(HCI)や社会科学の視点を取り入れる重要性に気づいたといいます。特に現在の生成AIブームにおいては、従来の「予測精度」のような明確な指標が通用しません。ウォラック氏は、生成AIの有用性や安全性を測るためには、社会科学的な測定手法を導入し、抽象的な概念を厳密に評価する必要があると提言しています。

AIの未来について、ヴォーン氏は楽観的な視点を持ちつつも、人間がAIに過度に依存し、主体性やスキルを失うリスクを懸念しています。AIは人間の能力を拡張するツールであるべきで、思考を放棄させるものであってはなりません。最後に、両氏は次世代のリーダーに向けてアドバイスを送りました。自らのパッションに従うこと、そして完璧主義を捨てて未完成の段階でも成果を共有することが、結果としてイノベーションと強固なネットワーク構築につながると強調しています。