AWS、AI開発の知識を動的ロード。コストと精度を改善
AI開発が抱える「文脈の罠」
詳細を読む
米アマゾン・ウェブ・サービス(AWS)は年次会議「re:Invent」にて、AI開発支援の新機能「Kiro powers」を発表しました。これはAIコーディングアシスタントが外部ツールと連携する際、必要な専門知識だけを動的に読み込む仕組みです。従来の手法で課題となっていたトークンの浪費や応答精度の低下を防ぎ、開発者の生産性とコスト効率を劇的に高める狙いがあります。
昨今のAI開発では、決済やDBなどの外部ツールを連携させる際、開始時にすべてのツール定義を読み込むのが一般的でした。しかしこれには、コードを書く前に数万トークンを消費してしまう重大な欠点があります。結果としてコストが嵩むだけでなく、無関係な情報がノイズとなり、AIの判断を鈍らせる「コンテキスト腐敗」を引き起こしていたのです。
Kiro powersはこの問題を、コンテキストの「オンデマンド化」で解決します。開発者が「決済」について尋ねればStripeの知識を、「データベース」と言えばSupabaseの知識を自動的に呼び出します。不要な情報はメモリから消去されるため、AIは常に最適な情報量で稼働し、回答精度と速度が向上します。AWSはこのアプローチを「何を忘れるべきかを知る賢さ」と位置づけています。
ローンチパートナーにはStripe、Figma、Datadogなど有力テック企業9社が名を連ねました。これにより、高度なスキルを持つエンジニアしか行えなかった「最適なプロンプト設定」や「ツール連携の最適化」が、誰でもワンクリックで利用可能になります。特定のサービスのベストプラクティスがパッケージ化され、即座に開発環境へ適用される「専門性の民主化」が進むでしょう。
特筆すべきは、この手法が高額なモデルのファインチューニングよりも安価で実用的である点です。企業は最新の高性能モデルを利用しながら、必要な専門性だけを外付けで追加できます。現在はAWSの「Kiro IDE」専用ですが、将来的にはCursorなど他のAIエディタとの互換性も目指しており、開発ツール市場全体の標準化を主導する構えです。