AI実用化の鍵「エージェントエンジニアリング」の全貌

従来開発との決定的な違い

入出力が予測不能な非決定論的システム
「出荷」はゴールでなく学習の手段
無限の入力パターンが存在

求められる3つのスキル

振る舞いを定義するプロダクト思考
実行基盤を作るエンジニアリング
性能を測定するデータサイエンス

成功への反復サイクル

構築・テスト・出荷・観察のループ
本番データに基づく迅速な改善
@LangChainJPのXポスト: 【ACE:自己改善するエージェント向けコンテキストフレームワーク】 Stanford UniversityやSambaNova Systemsらが提案したACE(Agentic Context… pic.twitter.com/XL1eF33WS3
詳細を読む

LangChainは2025年12月、AIエージェント開発における新たな規律「エージェントエンジニアリング」を提唱しました。LinkedInやCloudflareなど、実用的なエージェント導入に成功している企業は、従来のソフトウェア開発手法ではなく、非決定論的なAIの挙動を前提としたこの新しいアプローチを採用し始めています。

従来のソフトウェアは入力と出力が定義可能でしたが、AIエージェントはユーザーがあらゆる入力をし得るため、その挙動は無限かつ予測不可能です。「開発環境では動くが本番では動かない」という乖離が激しく、従来のデバッグ手法やテスト計画だけでは品質を保証できないのが現実です。

そこで提唱されるのが、プロダクト思考、エンジニアリング、データサイエンスを融合させた「エージェントエンジニアリング」です。これは特定の職種を指すのではなく、プロンプト設計、インフラ構築、性能測定といった異なるスキルセットを組み合わせ、チーム全体でAIの信頼性を高める取り組みを指します。

最大の特徴は「出荷(Ship)」の位置づけが変わることです。完璧な状態でのリリースを目指すのではなく、「出荷して学ぶ」ことを重視します。本番環境での実際の対話データやツールの使用状況を観察(Observe)し、そこから得た洞察をもとにプロンプトやロジックを即座に洗練(Refine)させるのです。

今後、AIが複雑な業務フローを担うにつれ、この「構築・テスト・出荷・観察・改善」の高速サイクルが標準となります。予測不可能なAIを制御し、ビジネス価値を生む信頼性の高いシステムへと昇華させるには、本番環境を最大の教師とし、泥臭く改善を続ける姿勢こそが不可欠です。