医療AI、女性や少数派の症状を軽視するバイアスが判明

運用導入事例規制・法務
詳細を読む

医師が利用するAIツールが、女性やエスニックマイノリティの健康状態を悪化させるリスクが指摘されています。米英の複数の研究で、多くの大規模言語モデル(LLM)がこれらの患者の症状を軽視する傾向が示されたのです。これは、社会に存在する治療格差のパターンをAIが再生産・強化する可能性を示唆します。

マサチューセッツ工科大学(MIT)の研究によると、OpenAIのGPT-4やMetaのLlama 3などは、女性患者に対して明らかに低いレベルの治療を推奨しました。症状によっては、専門医の受診ではなく自宅での自己治療を提案するなど、診断の深刻さを過小評価する傾向が見られたといいます。

同大学の別の研究では、人種によるバイアスも明らかになりました。GPT-4などのモデルは、精神的な不調を訴える黒人やアジア系の人々に対し、他の人種に比べて「共感」の度合いが低い回答を生成。これにより、患者が受けるサポートの質が人種によって左右される危険性が懸念されます。

同様の傾向は、ロンドン・スクール・オブ・エコノミクスの研究でも確認されました。ソーシャルワーカーの支援に使われるGoogleのGemmaモデルは、男性と比較して女性の身体的・精神的な問題を軽視する形でケースノートを要約・生成する傾向があったと報告されています。

現在、MicrosoftやGoogleなどの巨大テック企業は、医師の負担軽減と治療の迅速化を目指し、医療AI製品の開発を急いでいます。しかし、これらのツールに潜むバイアスは、特定の患者層に不利益をもたらしかねません。AIの恩恵を公平に享受するため、開発と導入にはより慎重な検証と対策が不可欠です。