DeepMind、製造ロボット群を協調させるAI「RoboBallet」開発
詳細を読む
Google DeepMindが、製造現場で複数のロボットアームの動きを自動で最適化するAIシステム「RoboBallet」を開発しました。従来は手作業で膨大な時間を要したタスク割り当て、スケジューリング、衝突回避という3つの難題をAIが同時に解決します。これにより、製造ラインのセットアップ時間を大幅に短縮し、生産性向上に貢献することが期待されます。
これまでの製造現場では、コンベアベルトに沿って配置されたロボットの動きは、専門家が手作業でプログラムしていました。この作業には数百から数千時間かかることも珍しくありません。特に、どのロボットがどの作業をどの順序で行うか、さらに互いに衝突しないように動作計画を立てることは、自動化が極めて困難な課題でした。
「RoboBallet」の革新性は、これまで個別に扱われてきた3つの難題を同時に解決する点にあります。DeepMindの研究者によれば、従来のツールは動作計画の一部を自動化できても、タスク割り当てとスケジューリングは手作業でした。この統合的なアプローチこそが、本研究の画期的な点と言えるでしょう。
開発チームは、まずシミュレーション環境でAIの学習を行いました。これは「ワークセル」と呼ばれる、ロボットチームが製品に対して作業を行うエリアを模したものです。この仮想空間内で、最大8台のロボットアームがテーブル上のアルミ製部品に対して最大40種類のタスクを完了するよう、AIは学習を重ねました。
シミュレーションのタスクでは、ロボットアーム先端(エンドエフェクタ)が正しい位置と角度で工作物に接近し、一定時間停止することが求められます。この停止は、溶接やネジ締めなどの実作業を想定したものです。AIは、このような複雑な動作の連携を衝突なく自律的に計画する能力を実証しました。