UCLAが光でAI画像を超高速生成、低消費電力とプライバシーを両立

インフラマルチモーダルデータ・プライバシー

光学AIの3大革新性

生成速度は光速レベルを達成
電子計算より低消費電力で稼働
デジタル情報を保護するプライバシー機能を搭載

技術構造と動作原理

デジタルとアナログのハイブリッド構造
光の位相パターンを利用したアナログ領域での計算
「知識蒸留」プロセスによる学習効率化
画像生成を単一の光パスで実行(スナップショットモデル)
詳細を読む

米カリフォルニア大学ロサンゼルス校(UCLA)の研究チームは、生成AIのエネルギー問題を解決する画期的な技術として、「光学生成モデル」を発表しました。電子ではなく光子を用いることで、AI画像生成を光速レベルで実現し、従来の拡散モデルが抱える高い消費電力とCO2排出量の削減を目指します。この技術は、処理速度の向上に加え、強固なプライバシー保護機能も提供します。

光学生成モデルは、デジタルプロセッサとアナログの回折プロセッサを組み合わせたハイブリッド構造です。まず、デジタル領域で教師モデルから学習したシード(光の位相パターン)を作成します。このシードにレーザー光を当て、回折プロセッサが一瞬でデコードすることで、最終的な画像を生成します。生成計算自体は、光を使ったアナログ領域で実行されるのが特徴です。

UCLAのAydogan Ozcan教授によると、このシステムは「単一のスナップショット」でエンドツーエンドの処理を完了します。従来の生成AIが数千ステップの反復を必要とするのに対し、光の物理を利用することで、処理時間が大幅に短縮され、電力効率が劇的に向上します。画質を向上させる反復モデルも開発されており、高い品質を実現しています。

本モデルの大きな利点の一つは、データのプライバシー保護能力です。デジタルエンコーダーから生成される位相情報は、人間には理解できない形式であるため、途中で傍受されても専用のデコーダーなしには解読できません。これにより、生成された情報を特定ユーザーのみが復号できる形で暗号化する仕組みを構築できます。

研究チームは、この技術をデジタルコンピュータエコシステム内の代替品ではなく、「視覚コンピューター」として位置づけています。特に、デバイスが直接人間の目に画像を投影するAR(拡張現実)やVR(仮想現実)システムにおいて、処理システムとして活用することで、クラウドからの情報伝達と最終的な画像生成を光速かつ高効率で実現できると期待されています。