Notion、自律型AIへ基盤再構築 推論モデル活かし生産性向上
自律型AIを支える新基盤
自律的なタスク実行と品質
詳細を読む
Notionは、エージェントAIの大規模展開を実現するため、既存の技術スタックをゼロから全面的に再構築しました。これは、従来のAIが持つステップ・バイ・ステップの制約を外し、高度な推論モデルを活用するためです。新アーキテクチャにより、エージェントは自律的にツールを選択・実行できるようになり、ユーザーはよりゴール志向で複雑な作業を任せられるようになります。
技術責任者は、レトロフィット(既存システムへの後付け)ではなく、推論モデルの強みを活かす設計が必要だと強調しています。このため、硬直的なプロンプトベースのフローを廃止し、中心に統一されたオーケストレーションモデルを導入しました。この中核モデルを、Notion内検索やデータベース操作を行うモジュール化されたサブエージェントがサポートします。
エージェントは、必要なツールを自律的に選択し、複数のタスクを並行で実行可能です。例えば、会議メモを提案書に変換したり、関連するタスクを追跡したりといった、一連の複雑な作業を一任できます。これにより、ユーザーは細かな指示出しから解放され、エンタープライズ規模での生産性向上が期待されています。
精度確保のため、特にハルシネーション(AIの誤情報)の隔離を最優先課題としています。評価プロセスを二分化し、決定論的テストやLLM-as-a-judgeなど複数の手法を組み合わせることで、問題の発生源を特定します。この評価構造により、不必要なハルシネーションを効果的に排除しています。
レイテンシ(応答速度)の管理においては、利用シーンに応じた最適化を徹底しています。「2+2」のような単純な質問には即時応答が求められますが、数百のウェブサイトやファイルにわたる20分かかる複雑な自律作業ではバックグラウンド実行を許可するなど、ユーザーの期待値管理を重視しています。
Notionは、社員が自身の製品を徹底的に使い込む「ドッグフーディング」を実施し、高速なフィードバックループを実現しています。また、外部のAIに精通したデザインパートナーにも早期アクセスを提供し、社内プロトタイプでは見過ごされがちな多様な視点からのフィードバックを得て、継続的な改善サイクルを回しています。