GoogleのAI、がん治療の新たな道を拓く
新AIモデル「C2S-Scale」
がん治療への新アプローチ
AIの予測を実験で証明
詳細を読む
Googleとイェール大学の研究チームは、オープンソースAIモデル「Gemma」を基に開発した新モデル「C2S-Scale 27B」を用い、がん治療の新たな経路を発見しました。このAIは、これまで免疫システムから見えなかった「コールド」腫瘍を、免疫が攻撃しやすい「ホット」な状態に変える可能性のある薬剤候補を特定。実験でもその効果が確認され、がん免疫療法の開発を加速させるブレークスルーとして期待されています。
今回開発された「C2S-Scale 27B」は、270億という膨大なパラメータを持つ基盤モデルです。個々の細胞が発する複雑な「言語」を解読するために設計されました。特筆すべきは、モデルの大規模化によって獲得された「創発的能力」です。これにより、小規模モデルでは不可能だった、特定の条件下でのみ薬が効果を発揮する、という複雑な因果関係の推論が可能になりました。
がん免疫療法の大きな課題は、多くの腫瘍が免疫細胞から身を隠す「コールド」な状態にあることです。研究チームはAIに対し、「低レベルの免疫信号(インターフェロン)が存在する環境下でのみ、免疫反応を増幅する薬剤」という非常に高度な条件を付けて探索させました。これは、腫瘍を特異的に「ホット」な状態に変えるための重要な戦略です。
AIは4,000種類以上の既存薬データを仮想スクリーニングし、キナーゼCK2阻害剤「silmitasertib」が上記の条件を満たすと予測しました。驚くべきことに、この薬剤が免疫反応を高めるという事実はこれまで文献で報告されておらず、AIが単なる既知の事実の再現ではなく、全く新しい科学的仮説を生成したことを意味します。
このAIの予測を検証するため、研究チームは実験室でヒトの細胞を用いてテストを実施しました。その結果、silmitasertibと低用量のインターフェロンを組み合わせることで、免疫システムが腫瘍を認識する目印となる「抗原提示」が約50%も増加することが確認されました。AIの予測は見事に証明されたのです。
今回の成果は、AIが創薬研究において、有望な仮説を高速に生成し、実験の方向性を示す強力なツールとなり得ることを示しました。GoogleはC2S-Scale 27Bモデルを研究コミュニティに公開しており、今後、この技術を応用した新しい併用療法の開発が世界中で加速することが期待されます。