LangChain(企業)に関するニュース一覧

Portが1億ドル調達、AIエージェント管理でSpotifyに対抗

評価額8億ドルへの躍進

シリーズCで1億ドルを調達
評価額8億ドルに到達
LGやGitHubなど大手顧客を獲得

AIエージェント管理の課題

開発現場でのエージェント利用が急増
統制なき導入によるカオス化が懸念
データ分散やセキュリティが課題

Port独自の解決策

エージェントオーケストレーション機能
人間による承認プロセスを統合
コンテキストガードレールを一元管理

イスラエルのスタートアップPortは12月11日、シリーズCラウンドで1億ドルを調達したと発表しました。評価額は8億ドルに達し、Spotifyの「Backstage」に対抗する社内開発者ポータルとして、AIエージェント管理機能を強化します。

開発現場ではコーディングだけでなく、インシデント解決やリリースマネジメントなど多岐にわたる業務でAIエージェントの活用が進んでいます。しかし、ツールやデータが分散し、企業としての統制がないまま導入が進み、現場が混乱するリスクが高まっています。

Portはこの課題に対し、単なるツールカタログに留まらないオーケストレーション層を提供します。「Context Lake」機能により、エージェントが必要とするデータソースやガードレールを定義し、安全で正確な業務遂行を支援することが可能です。

また、エージェントのパフォーマンス測定や、必要に応じて人間が承認を行う「ヒューマン・イン・ザ・ループ」のプロセスも統合されています。同社のCEOは、エンジニアの業務の90%を占めるコーディング以外のタスクを効率化すると強調します。

今回の調達資金を活用し、PortはAIエージェント管理市場での地位確立を急ぎます。LangChainやUiPath、大手テック企業など多くの競合がひしめく中、開発者体験とガバナンスを両立させるプラットフォームとしての真価が問われます。

LangChain、複雑なAIエージェントの解析・修正を自動化

AIがログ解析・修正提案

膨大な実行ログからエラー原因を特定
自然言語でプロンプト修正案を自動生成

CLIで開発フローを統合

ターミナルからトレースデータを直接取得
ログをコーディングAIに渡し修正を自動化

複雑なエージェント開発を支援

数百ステップに及ぶ長時間処理を可視化
人手困難な解析作業をAIが代替

LangChainは10日、LLMアプリ開発プラットフォーム「LangSmith」にて、自律型AIエージェントデバッグを支援する新機能「Polly」と「Fetch」を発表しました。複雑化するAI開発において、エンジニアの負担を劇的に軽減し、生産性を高めるツールとして注目されます。

近年のAIエージェントは数百のステップを経て数分間稼働するなど複雑化し、「ディープエージェント」と呼ばれます。その結果、膨大な実行ログの中からエラー原因や非効率な挙動を人間が目視で特定することが極めて困難になり、開発のボトルネックとなっていました。

新機能の「Polly」は、ログ画面に常駐するAIアシスタントです。「どこで間違えたか」「より効率的な方法はないか」とチャットで問うだけで、AIが膨大なトレースを解析し回答します。さらに、改善点に基づきシステムプロンプトの具体的な修正案も提示します。

同時に発表されたCLIツール「Fetch」は、ターミナルやIDEでの開発を加速します。直近の実行ログをコマンド一つで取得し、Claude CodeなどのコーディングAIに直接パイプすることで、原因究明からコード修正までを半自動化するワークフローを実現します。

従来、多くの時間を要していたログ解析作業をAIに任せることで、エンジニアは本質的なロジック構築やアーキテクチャ設計に集中できます。これらのツールは、高度なAIエージェント開発の生産性と品質を同時に高める強力な武器となるでしょう。

AI実用化の鍵「エージェントエンジニアリング」の全貌

従来開発との決定的な違い

入出力が予測不能な非決定論的システム
「出荷」はゴールでなく学習の手段
無限の入力パターンが存在

求められる3つのスキル

振る舞いを定義するプロダクト思考
実行基盤を作るエンジニアリング
性能を測定するデータサイエンス

成功への反復サイクル

構築・テスト・出荷・観察のループ
本番データに基づく迅速な改善

LangChainは2025年12月、AIエージェント開発における新たな規律「エージェントエンジニアリング」を提唱しました。LinkedInやCloudflareなど、実用的なエージェント導入に成功している企業は、従来のソフトウェア開発手法ではなく、非決定論的なAIの挙動を前提としたこの新しいアプローチを採用し始めています。

従来のソフトウェアは入力と出力が定義可能でしたが、AIエージェントはユーザーがあらゆる入力をし得るため、その挙動は無限かつ予測不可能です。「開発環境では動くが本番では動かない」という乖離が激しく、従来のデバッグ手法やテスト計画だけでは品質を保証できないのが現実です。

そこで提唱されるのが、プロダクト思考、エンジニアリング、データサイエンスを融合させた「エージェントエンジニアリング」です。これは特定の職種を指すのではなく、プロンプト設計、インフラ構築、性能測定といった異なるスキルセットを組み合わせ、チーム全体でAIの信頼性を高める取り組みを指します。

最大の特徴は「出荷(Ship)」の位置づけが変わることです。完璧な状態でのリリースを目指すのではなく、「出荷して学ぶ」ことを重視します。本番環境での実際の対話データやツールの使用状況を観察(Observe)し、そこから得た洞察をもとにプロンプトやロジックを即座に洗練(Refine)させるのです。

今後、AIが複雑な業務フローを担うにつれ、この「構築・テスト・出荷・観察・改善」の高速サイクルが標準となります。予測不可能なAIを制御し、ビジネス価値を生む信頼性の高いシステムへと昇華させるには、本番環境を最大の教師とし、泥臭く改善を続ける姿勢こそが不可欠です。

DeepAgents CLI、ベンチマークでClaude Codeと同等性能

オープンソースのCLI

Python製のモデル非依存ツール
シェル実行やファイル操作が可能

89タスクでの実力証明

Sonnet 4.5で42.5%を記録
Claude Code同等の性能

隔離環境での厳密な評価

Harborで隔離環境を構築
大規模な並列テストに対応

LangChainは、自社のDeepAgents CLIが評価指標Terminal Bench 2.0において約42.5%のスコアを記録したと発表しました。この数値はClaude Codeと同等の水準であり、エンジニアにとって有力な選択肢となります。オープンソースかつモデル非依存のエージェントとして、実環境での高い運用能力と将来性が実証された形です。

DeepAgents CLIは、Pythonで記述された端末操作型のコーディングエージェントです。特定のLLMに依存せず、ファイル操作やシェルコマンド実行、Web検索などを自律的に行います。開発者の承認を経てコード修正を行うため、安全性も考慮されています。

今回の評価には、89の実践的タスクを含むTerminal Bench 2.0が使用されました。ソフトウェア工学からセキュリティまで多岐にわたる分野で、エージェントが端末環境を操作する能力を測定します。複雑なタスクでは100回以上の操作が必要となります。

評価の信頼性を担保するため、Harborというフレームワークが採用されました。DockerやDaytonaなどの隔離されたサンドボックス環境でテストを行うことで、前回のテストの影響を排除し、安全かつ大規模な並列実行を実現しています。

今回の結果により、DeepAgents CLIがコーディングエージェントとして強固な基盤を持つことが証明されました。LangChainは今後、エージェントの挙動分析や最適化を進め、さらなる性能向上を目指す方針です。

LangChain流「AIエージェント評価」5つの鉄則

複雑な自律AIに必須の検証手法

データごとに成功基準を定義し個別検証
シングルステップで意思決定を単体テスト
フルターンで最終成果物と軌跡を確認

効率的なテスト戦略と環境構築

条件分岐でマルチターン対話を再現
テスト毎にクリーンな環境へリセット
外部APIはモック化しコスト削減

LangChainは12月3日、自律型AI「Deep Agents」の開発を通じて得られた評価手法の知見を公開しました。従来の単発的なLLM評価とは異なり、長期的なタスクを遂行するエージェントには、状態や行動履歴を含めた多層的な検証が不可欠であると結論付けています。

従来の画一的な評価に対し、Deep Agentsにはデータポイントごとに個別のテストロジックが必要です。「特定のファイルを正しく更新したか」といった具体的な成功基準を設け、エージェントの行動(Trajectory)と内部状態の変化をコードベースで精密に検証します。

検証コストを下げるため、一連の動作を完了させる前に「次の1手」だけを確認するシングルステップ評価が有効です。これにより、特定の状況下で正しいツールを選択したかをユニットテストのように高速に確認でき、問題の早期発見とデバッグが可能になります。

実運用に近い評価には、対話の分岐を考慮したマルチターン評価や、テスト毎に環境を初期化するサンドボックスが重要です。外部API通信をモック化して再現性を担保するなど、エンジニアは堅牢な評価基盤(Evals)の構築に注力すべきです。

LangSmith、対話で作れる自律AI構築機能を一般公開

チャットで自律エージェント開発

会話のみでノーコード開発
動的な判断でタスクを自律完遂
詳細プロンプト自動生成

社内ツール連携とチーム共有

MCP社内システムと接続
APIで既存ワークフロー統合
チーム内での共有と再利用

LangChainは2025年12月2日、コーディング不要で実用的なAIエージェントを作成できる「LangSmith Agent Builder」をパブリックベータ版として公開しました。従来の固定的な手順書型とは異なり、チャットで指示するだけで、自律的に判断・実行する高度なエージェントを誰でも短時間で構築・展開できる点が画期的です。

最大の特徴は、エンジニアでなくとも対話形式で開発が完結する点です。ユーザーの曖昧なアイデアから、システムが自動で詳細なプロンプトを作成し、必要なツールを選定します。これにより、現場の担当者が自ら業務特化型AIを作ることが可能です。

従来の手順型自動化とは異なり、このエージェントは状況に応じて動的に計画を修正しながらタスクを遂行します。複雑な調査や分析など、事前に手順を定義しきれない業務でも、エージェントが試行錯誤を繰り返して目的を達成するため、生産性が向上します。

企業利用を見据え、拡張性も強化されました。MCPサーバーを介して社内データやAPIと安全に接続できるほか、作成したエージェントをAPI経由で呼び出すことも可能です。また、タスクに応じてOpenAIAnthropicなどのモデルを選択できます。

先行ユーザーにより、営業リサーチやチケット管理など多岐にわたる事例が生まれています。チーム内でテンプレートを共有し、個々のニーズに合わせて微調整することで、開発リソースを使わずに組織全体の業務効率化を加速させることができます。

LangChain、自律エージェントに「Skills」機能実装

ファイルシステム活用の新潮流

Anthropic提唱のSkillsに対応
マークダウン形式で動的に指示を読込
汎用エージェントツール数削減に寄与
シェル操作と連携し多様なタスク実行

コンテキスト効率と拡張性の向上

トークン消費を抑えコンテキスト節約
エージェント認知負荷を大幅軽減
CLIでフォルダ配置だけで機能拡張
エージェント自身によるスキル生成も視野

LangChainは2025年11月25日、オープンソースの自律エージェント基盤「Deep Agents」に対し、Anthropicが提唱する「Skills」機能を追加したと発表しました。これにより、エージェントは外部ファイルとして定義された手順書やスクリプトを必要に応じて動的に読み込み、複雑なタスクを効率的に実行することが可能になります。

Claude CodeManusといった最新の汎用エージェントは、個別の専用ツールを多数装備するのではなく、ファイルシステムへのアクセス権とコマンド実行という「少数の強力な手段」で多様な作業をこなす傾向にあります。今回実装された「Skills」はこの潮流を体系化したもので、`SKILL.md`を含むフォルダ単位で能力をモジュール管理する仕組みです。

従来のツール定義(Function Calling)はすべての情報を常にプロンプトに含めるためトークンを大量消費していましたが、Skillsは概要のみを提示し、詳細は実行が必要な時だけ読み込む「プログレッシブ・ディスクロージャー」を採用しています。これにより、コンテキストウィンドウの消費を劇的に抑え、より長い文脈での推論を可能にします。

この仕組みは、ツール選択肢の過多によるエージェントの「コンテキストの混乱」を防ぎ、認知負荷を低減する効果もあります。ユーザーは`deepagents-CLI`の所定フォルダにスキルセットを配置するだけで機能を拡張でき、将来的にはエージェント自身が新しいスキルを作成・共有する「継続的な学習」への発展も期待されています。

AIエージェントのコンテキスト制御はファイルシステムで進化する

既存の検索とコンテキストの課題

検索結果過多によるトークンコストの増大
ウィンドウサイズを超える情報量の欠落
意味検索では拾えないニッチ情報の検索

ファイルシステム活用の利点

結果を一時保存し必要な箇所のみ抽出
grep等の活用で正確な情報特定
指示やスキルを保存し継続的に学習

LangChainは、AIエージェントがファイルシステムを操作することで、性能を飛躍的に高める手法を解説しました。これは「コンテキストエンジニアリング」の核心であり、コスト削減と精度向上を両立する重要な鍵となります。

従来のウェブ検索ツール等は大量のトークンを消費し、LLMの容量やコストを圧迫していました。また、意味検索だけでは、コード内の特定の行や正確な設定値といったニッチな情報を見つけ出すことが困難な場合もあります。

ファイルシステムを一時的な「メモ帳」として使えば、数万トークンの検索結果を保存し、必要な情報だけをコマンドで抽出可能です。これにより、会話履歴を汚さずにコストを大幅に抑制し、効率的な処理を実現します。

さらに、エージェントは自身の計画や学んだスキルをファイルに書き出せます。これにより、長期的なタスク実行時の記憶保持や、ユーザーの好みに合わせた自己進化が可能になり、将来の対話においても有用な情報を参照できます。

ファイルシステムは単なる保存場所ではなく、エージェントが無限の情報を柔軟に扱うためのインターフェースです。これを活用することで、エンジニアはより複雑で信頼性の高い自律型エージェントを構築できるようになります。

独JimdoがLangChain採用、個人事業主の注文数が40%増

課題と技術的アプローチ

人事業主の専門知識不足を解決
LangGraphで文脈認識AIを構築
10以上のデータを統合分析

導入効果と今後の展望

初成約の達成率が50%向上
注文や問い合わせが40%増加
提案から実行の自動化へ進化

ドイツのWebサイト作成サービスJimdoは、LangChainを活用したAI「Jimdo Companion」を開発しました。個人事業主が抱える集客や運営の課題に対し、10以上のデータソースを分析して最適な行動を提案します。このAI導入により、ユーザーの注文数が40%増加するなど顕著な成果を上げています。

多くの個人事業主はWebサイトを作成できても、SEOやマーケティングの専門知識が不足しています。その結果、トラフィックやコンバージョンを伸ばせず、効果的な施策を打てないという課題がありました。

開発チームはLangGraph.jsを採用し、状況に応じて動的に判断するAIを構築しました。ユーザーのビジネス状況や過去の行動履歴といった文脈を保持しつつ、複数の分析を並行して実行できる点が特徴です。

「Companion Assistant」はユーザーのブランドトーンを学習し、SEOや予約管理などを支援します。ダッシュボードでは、次に優先すべきアクションを具体的に提示し、意思決定をサポートします。

導入効果は明確で、AI利用者は利用しない層に比べて最初の顧客獲得率が50%高くなりました。単なる集客増だけでなく、提供価値の明確化や価格設定の最適化にも貢献しています。

AIの信頼性を担保するため、LangSmithを用いて回答精度や遅延を監視しています。評価プロセスを確立することで、継続的なプロンプトの改善やバグ修正の迅速化を実現しました。

今後は「アドバイス」から「実行」の自動化へ進化します。設定や最適化を自律的に行うエージェント群を強化し、個人事業主がビジネスの本質に集中できるプラットフォームを目指します。

ServiceNow、AIエージェント連携で顧客体験を革新

散在するエージェントの課題

部署ごとに断片化したAIエージェント
顧客体験の一貫性の欠如

LangChainによる高度な連携

LangGraphで複雑な連携を構築
LangSmithで挙動を可視化デバッグ
人間が開発に介在し効率化

厳格な評価と今後の展望

独自の評価基準で性能を測定
成功例から品質データを自動生成
本番稼働後の継続的な監視

デジタルワークフロー大手のServiceNowが、セールスとカスタマーサクセス業務の変革を目指し、LangChainのツール群を活用したマルチエージェントシステムを開発しています。顧客獲得から契約更新まで、一貫した顧客体験を提供することが狙いです。本記事では、その先進的なアーキテクチャと開発手法を解説します。

これまで同社では、AIエージェントが各部署に散在し、顧客のライフサイクル全体を横断する複雑なワークフローの連携が困難でした。この「エージェントの断片化」が、一貫性のある顧客対応を提供する上での大きな障壁となっていたのです。

この課題を解決するため、ServiceNowは顧客ジャーニー全体を統括するマルチエージェントシステムを構築しました。リード獲得、商談創出、導入支援、利用促進など各段階を専門エージェントが担当し、スーパーバイザーエージェントが全体を指揮する構成です。

システムの核となるエージェント間の連携には、LangGraphが採用されました。これにより、複雑な処理をモジュール化して組み合わせることが可能になりました。また、開発者が途中で処理を停止・再開できる機能は、開発効率を劇的に向上させました。

一方、エージェントの挙動監視とデバッグにはLangSmithが不可欠でした。各ステップの入出力や遅延、トークン数を詳細に追跡できるため、問題の特定が容易になります。これにより、開発チームはエージェントのパフォーマンスを正確に把握し、改善を重ねることができました。

品質保証の仕組みも高度です。LangSmith上で、エージェントのタスクごとに独自の評価基準を設定。さらに、LLMを判定者として利用し、出力の精度を評価します。基準を満たした成功例は「ゴールデンデータセット」として自動で蓄積され、将来の品質低下を防ぎます。

システムは現在、QAエンジニアによるテスト段階にあります。今後は本番環境でのリアルタイム監視に移行し、収集したデータで継続的に品質を向上させる計画です。ServiceNowのこの取り組みは、AIを活用した顧客管理の新たな標準となる可能性を秘めています。

LangChain、安全なコード実行サンドボックス発表

AIエージェント開発の課題

悪意あるコード実行のリスク
開発環境の複雑化と汚染
複数エージェントの並列実行
長時間タスクによるPC占有

サンドボックスがもたらす価値

隔離環境で安全なコード実行
クリーンな環境を即時構築
リソース競合なく並列処理
チーム間で実行環境を統一

LangChain社が、AIエージェント開発プラットフォーム「DeepAgents」向けに、生成されたコードを安全に実行するための新機能「Sandboxes」を発表しました。この機能は、Runloop、Daytona、Modalの3社と提携し、ローカルマシンから隔離されたリモート環境でコードを実行することで、悪意のあるコードによるリスクを排除します。開発者は安全性と環境の再現性を両立できます。

なぜサンドボックスが必要なのでしょうか。AIエージェントは自律的にコードを生成・実行するため、意図せずシステムに損害を与える危険性がありました。また、開発環境に特定のライブラリを追加する必要があるなど、環境構築の複雑化も課題でした。サンドボックスは、こうした安全性や環境汚染の問題を解決し、クリーンで一貫性のある実行環境を提供します。

DeepAgent自体は開発者のローカルマシンなどで動作しますが、コードの実行やファイルの作成といった命令はリモートのサンドボックス内で行われます。エージェントはサンドボックス内のファイルシステムやコマンド出力を完全に把握できるため、あたかもローカルで作業しているかのように、自然な対話と修正を繰り返すことが可能です。

導入は非常に簡単です。提携するサンドボックスサービスのアカウントを作成し、APIキーを環境変数として設定します。その後、DeepAgentsのコマンドラインツール(CLI)で簡単なコマンドを実行するだけで、サンドボックスをエージェントに接続し、利用を開始できます。セットアップスクリプトで環境の事前準備も可能です。

サンドボックスは強力ですが、万能ではありません。悪意のあるプロンプト入力によって機密情報が漏洩する「プロンプトインジェクション」のリスクは残ります。対策として、人間による監視(Human-in-the-loop)や、有効期間の短いAPIキーを使うなどの対策が推奨されています。

LangChainは今後、サンドボックスの設定オプションをさらに拡充し、実際の業務で活用するための具体例を共有していく計画です。AIエージェントがより安全かつ強力なツールとしてビジネスの現場で活用される未来に向け、開発者コミュニティと共に機能を進化させていく方針です。

LangChain、AWS re:InventでAIエージェント開発を加速

re:Invent 2025出展概要

12月1-4日にブース#524で出展
エンジニアチームによる技術相談・デモ
CEOハリソン氏もブースに登場

主な発表・セッション

新機能Insights Agentの紹介
複数ターン評価機能を披露
LangSmithのAWSセルフホスト版提供
OpenSearchやRedisとの連携セッション

AI開発フレームワーク大手のLangChainは、2025年12月1日から4日にラスベガスで開催される「AWS re:Invent」に出展します。同社のブース(#524)では、AIエージェント開発を加速する新機能や、AWS上で自社インフラに導入できる「LangSmith」のセルフホスト版を披露。本番環境でのエージェント運用や評価戦略に課題を抱える開発者や企業にとって、直接技術的なフィードバックを得られる貴重な機会となりそうです。

特に注目されるのが、LLMアプリケーションの開発・監視プラットフォーム「LangSmith」のAWSセルフホスト版です。AWS Marketplaceを通じて提供され、自社のAWSインフラ上でLangSmithをホスト可能になります。これにより、セキュリティ要件が厳しい企業でも安心して導入でき、支払いをAWS利用料に一本化できるメリットがあります。

ブースでは、最新機能である「Insights Agent」や「複数ターン評価(Multi-turn Evaluations)」のデモも実施されます。これらは、本番環境で稼働するAIエージェントの課題特定や、より複雑な対話シナリオの評価を効率化するための新機能です。具体的な活用方法について、エンジニアから直接説明を受けることができます。

期間中、LangChainは技術セッションにも参加します。OpenSearchとの連携による文脈エンジニアリングのパターンに関するイベントや、RedisブースでのスケーラブルなAIアーキテクチャ構築に関するライトニングトークを予定。エコシステムパートナーとの連携強化もアピールします。

12月3日には、CEOのハリソン氏がブースに登場し、ロードマップや実装上の課題について直接質問できる機会も設けられます。また、会期を通じて同社のエンジニアチームが常駐し、参加者が直面する具体的な課題に関するミーティングにも応じるとしています。

LangChain、人の思考模倣でAI精度向上

ベクトル検索手法の限界

文書構造を壊すチャンキング
頻繁な再インデックスの手間
引用元が不明確になる問題

新アプローチの核心

人間の思考を模倣したワークフロー
API経由での直接データアクセス
複雑な問合せに対応するDeep Agent

AI開発フレームワークを提供するLangChain社が、自社のサポート用チャットボット「Chat LangChain」を再構築しました。従来のベクトル検索ベースの手法では社内エンジニアの複雑なニーズに応えられず、利用されていなかったためです。新しいアプローチでは、エンジニアの調査プロセスを模倣した「Deep Agent」アーキテクチャを採用し、回答の精度と信頼性を劇的に向上させました。

なぜ従来のチャットボットは使われなかったのでしょうか。その原因は、一般的な文書検索で用いられるベクトル埋め込み手法の限界にありました。文書を断片化(チャンキング)するため文脈が失われ、頻繁な更新には再インデックスが必要でした。さらに、引用元が曖昧で、ユーザーは回答の正しさを検証するのが困難でした。

そこで同社が注目したのは、熟練エンジニアの思考プロセスです。彼らは問題解決の際、①公式ドキュメント、②ナレッジベース、③ソースコード、という3つの情報源を順に参照していました。この人間のワークフローをそのまま自動化するアプローチを採用。各情報源に特化した「サブエージェント」が調査し、その結果を統括役の「Deep Agent」が集約して最適な回答を生成します。

この新アーキテクチャの強みは、文脈の過負荷を防ぐ点にあります。各サブエージェントは独立して動作し、膨大な情報から最も重要なエッセンスのみを抽出します。これにより、統括エージェントは整理された情報に基づいて最終的な回答を合成できるため、ノイズに惑わされることなく、深く、的確な回答が可能になります。

この事例は、AIエージェント開発における重要な教訓を示唆しています。それは「最適なワークフローを模倣せよ」ということです。ベクトル検索は非構造化データには有効ですが、構造化されたドキュメントやコードには不向きな場合があります。ユーザーの実際の行動を観察し、その思考プロセスを自動化することが、真に役立つAIを構築する鍵となるでしょう。

LangChain、誰でもAIエージェントを開発できる新ツール

ノーコードで誰でも開発

開発者でも対話形式で構築
従来のワークフロービルダーと一線
LLMの判断力で動的に応答
複雑なタスクをサブエージェントに分割

連携と自動化を加速

Gmail等と連携するツール機能
イベントで起動するトリガー機能
ユーザーの修正を学習する記憶機能
社内アシスタントとして活用可能

AI開発フレームワーク大手のLangChainは10月29日、開発者以外のビジネスユーザーでもAIエージェントを構築できる新ツール「LangSmith Agent Builder」を発表しました。このツールは、プログラミング知識を必要としないノーコード環境を提供し、対話形式で簡単にエージェントを作成できるのが特徴です。組織全体の生産性向上を目的としています。

新ツールの最大の特徴は、従来の視覚的なワークフロービルダーとは一線を画す点にあります。あらかじめ決められた経路をたどるのではなく、大規模言語モデル(LLM)の判断能力を最大限に活用し、より動的で複雑なタスクに対応します。これにより、単純な自動化を超えた高度なエージェントの構築が可能になります。

エージェントは主に4つの要素で構成されます。エージェントの論理を担う「プロンプト」、GmailやSlackなど外部サービスと連携する「ツール」、メール受信などをきっかけに自動起動する「トリガー」、そして複雑なタスクを分割処理する「サブエージェント」です。これらを組み合わせ、目的に応じたエージェントを柔軟に設計できます。

開発のハードルを大きく下げているのが、対話形式のプロンプト生成機能です。ユーザーが自然言語で目的を伝えると、システムが質問を重ねながら最適なプロンプトを自動で作成します。さらに、エージェント記憶機能を備えており、ユーザーによる修正を学習し、次回以降の応答に反映させることができます。

具体的な活用例として、メールやチャットのアシスタントSalesforceとの連携などが挙げられます。例えば、毎日のスケジュールと会議の準備資料を要約して通知するエージェントや、受信メールの内容に応じてタスク管理ツールにチケットを作成し、返信案を起草するエージェントなどが考えられます。

「LangSmith Agent Builder」は現在、プライベートプレビュー版として提供されており、公式サイトからウェイトリストに登録できます。同社は、オープンソースのLangChainやLangGraphで培った知見を活かしており、今後もコミュニティの意見を取り入れながら機能を拡張していく方針です。

LangChain、DeepAgents 0.2公開 長期記憶を実装

DeepAgents 0.2の進化

プラグイン可能なバックエンド導入
ローカルやS3を長期記憶に活用
大規模なツール結果の自動退避機能
会話履歴の自動要約で効率化

各ライブラリの役割

DeepAgents: 自律エージェント用ハーネス
LangChain: コア機能のフレームワーク
LangGraph: ワークフローランタイム
3つのライブラリは階層構造で連携

AI開発フレームワークのLangChainは2025年10月28日、自律型AIエージェント構築用のパッケージ「DeepAgents」のバージョン0.2を公開しました。複雑なタスクを長時間実行できるエージェント開発を加速させることが目的です。最大の目玉は、任意のデータストアを「ファイルシステム」として接続できるプラグイン可能なバックエンド機能で、エージェントの長期記憶や柔軟性が大幅に向上します。

これまでDeepAgentsのファイルシステムは、LangGraphのステートを利用した仮想的なものに限定されていました。しかし新バージョンでは、「Backend」という抽象化レイヤーが導入され、開発者はローカルのファイルシステムやクラウドストレージなどを自由に接続できるようになりました。これにより、エージェントがアクセスできるデータの範囲と永続性が飛躍的に高まります。

特に注目すべきは、複数のバックエンドを組み合わせる「コンポジットバックエンド」です。例えば、基本的な作業領域はローカルを使いつつ、「/memories/」のような特定のディレクトリへの操作だけをクラウドストレージに振り分ける設定が可能。これにより、エージェントはセッションを越えて情報を記憶・活用する長期記憶を容易に実装できます。

バージョン0.2では、バックエンド機能の他にも実用的な改善が多数追加されました。トークン数が上限を超えた場合に、ツールの大規模な実行結果を自動でファイルに退避させたり、長くなった会話履歴を要約したりする機能です。これにより、長時間稼働するエージェントの安定性とリソース効率が向上します。

LangChainは今回、`DeepAgents`を「エージェントハーネス」、`LangChain`を「フレームワーク」、`LangGraph`を「ランタイム」と位置づけを明確にしました。それぞれが階層構造で連携しており、開発者はプロジェクトの目的に応じて最適なライブラリを選択することが推奨されます。自律性の高いエージェント開発にはDeepAgentsが最適です。

LangChain提唱、AIエージェント開発の3分類

3つの新たなツール分類

開発を抽象化するフレームワーク
本番実行を支えるランタイム
即戦力の多機能ツール群ハーネス
代表例はLangChain、LangGraph

階層構造と使い分け

ハーネス > フレームワーク > ランタイム
開発フェーズに応じたツール選択が鍵
複雑な開発を整理する思考の枠組み

AI開発ツール大手のLangChain社が、AIエージェント開発ツールを「フレームワーク」「ランタイム」「ハーネス」の3つに分類する新たな概念を提唱しました。これは、乱立する開発ツール群を整理し、開発者がプロジェクトの目的やフェーズに応じて最適なツールを選択しやすくするための「思考の枠組み」を提供するものです。本記事では、それぞれの定義と役割、そして適切な使い分けについて解説します。

まず「フレームワーク」は、開発の抽象化と標準化を担います。代表例は同社の「LangChain」で、開発の初期段階で迅速にプロトタイプを構築するのに役立ちます。一方で、抽象化が進むことで内部動作が不透明になり、高度なカスタマイズが難しい場合があるという課題も指摘されています。

次に「ランタイム」は、エージェント本番環境で安定して実行するための基盤です。「LangGraph」がこれに該当し、耐久性のある実行や人間による介入(ヒューマン・イン・ザ・ループ)など、インフラ層の機能を提供します。フレームワークよりも低レベルな層で動作し、堅牢なアプリケーションの構築を支えます。

最後に「ハーネス」は、フレームワークよりさらに高レベルな、「すぐに使える」多機能パッケージを指します。同社の新プロジェクト「DeepAgents」がその一例で、デフォルトのプロンプトやツールが予め組み込まれています。特定のタスクに特化した「即戦力」として、迅速な開発と導入が可能です。

これら3つは、ハーネスがフレームワーク上に構築され、フレームワークがランタイム上で動作するという階層関係にあります。開発者は、迅速な試作ならフレームワーク本番運用ならランタイム特定用途ですぐに使いたいならハーネス、というように目的応じて使い分けることが重要になるでしょう。

この分類はまだ黎明期にあり定義も流動的ですが、AIエージェント開発の複雑性を理解する上で非常に有用な思考の枠組みと言えます。自社の開発プロジェクトがどの段階にあり、どのツールが最適かを見極めるための一助となるのではないでしょうか。

LangSmith、AIエージェントの本番監視・評価を強化

利用状況を自動で可視化

膨大な利用ログを自動分類
ユーザーの意図をパターン化
失敗原因の特定を支援

対話全体の成否を評価

複数回のやり取り全体を評価
ユーザー目的の達成度を測定
LLMによる自動スコアリング

LangChain社が、LLMアプリ開発基盤「LangSmith」にAIエージェントの監視・評価を強化する新機能を追加しました。2025年10月23日に発表された「Insights Agent」と「Multi-turn Evals」です。これにより開発者は、本番環境でのユーザーの利用実態を深く理解し、エージェントの品質向上を加速できます。

AIエージェントが本番投入される事例が増える一方、その品質評価は大きな課題でした。従来の監視手法では、単なる稼働状況しか分からず、エージェントが「ユーザーの真の目的」を達成できたかまでは把握困難でした。膨大な対話ログの全てに目を通すのは非現実的です。

新機能「Insights Agent」は、この課題に応えます。本番環境の膨大な利用ログをAIが自動で分析し、共通の利用パターンや失敗モードを抽出。「ユーザーは何を求めているか」「どこで対話が失敗しているのか」をデータに基づき把握でき、改善の優先順位付けが格段に容易になります。

もう一つの新機能「Multi-turn Evals」は、複数回のやり取りからなる対話全体を評価します。個々の応答の正しさだけでなく、一連の対話を通じてユーザーの最終目的が達成されたかを測定。LLMを評価者として活用し、対話の成否を自動でスコアリングできるのが特徴です。

これら2つの機能を組み合わせることで、開発サイクルは劇的に変わるでしょう。「Insights Agent」で"何が起きているか"を把握し、「Multi-turn Evals」で"それが成功か"を測定する。この本番データに基づいた高速な改善ループこそが、信頼性の高いエージェントを構築する鍵となります。

LangChain社は、エージェント開発における「本番投入後の改善」という重要課題に正面から取り組みました。今回の新機能は、開発者実世界のデータから学び、迅速に製品を改良するための強力な武器となるでしょう。今後の機能拡充にも期待が高まります。

LangChain v1.0公開、開発速度と本番運用を両立

LangChain: 柔軟性と速度

新機能`create_agent`で高速開発
エージェントループをミドルウェアで制御
パッケージを簡素化しコア機能に集中
モデル非依存の標準コンテンツ出力

LangGraph: 堅牢性と制御

永続的状態管理で中断からの再開
人間による介入(HITL)を標準支援
複雑なワークフローをグラフで構築
本番環境での長期運用に最適化

AI開発フレームワークを手がけるLangChain社は2025年10月22日、主要ライブラリ「LangChain」と「LangGraph」のバージョン1.0を正式リリースしました。今回の更新は、開発者のフィードバックを反映し、APIの安定性を約束するとともに、本番環境での利用を容易にすることを目的としています。LangChainはミドルウェア導入で柔軟性を、LangGraphは永続化機能で堅牢性を高め、開発の迅速性とシステムの信頼性を両立させます。

LangChain 1.0の最大の目玉は、エージェント開発を高速化する新機能`create_agent`です。これはLangGraphの堅牢なランタイム上で動作します。さらに「ミドルウェア」という新概念が導入され、エージェントの実行ループの各段階で、人間による承認や個人情報のマスキングといったカスタム処理を簡単に追加できるようになりました。これにより、柔軟な制御が可能になります。

LangGraph 1.0は、本番環境で長期稼働する、信頼性の高いAIエージェントの構築に焦点を当てています。最大の特徴は永続的な状態管理機能です。これにより、システムが中断しても会話の文脈を失うことなく、処理を正確に再開できます。また、人間が介入して監視・承認を行う「ヒューマン・イン・ザ・ループ」のパターンもネイティブでサポートし、重要な意思決定を伴う業務にも対応します。

2つのフレームワークはどう使い分けるべきでしょうか。LangChainは、標準的なパターンですばやくエージェントを構築したい場合に最適です。一方、LangGraphは、複数の処理が絡み合う複雑なワークフローや、コストとレイテンシを厳密に管理したい場合に強みを発揮します。重要なのは、両者がシームレスに連携できる点です。LangChainで始め、必要に応じてLangGraphの低レベルな制御へと移行できます。

今回のv1.0リリースは、APIの安定性への強いコミットメントを示すものです。バージョン2.0まで破壊的変更を行わない方針が明言されており、開発者は安心して長期的なプロジェクトに採用できます。合わせてドキュメントサイトも刷新され、PythonとJavaScriptのドキュメントが統合されました。これにより、開発者はより効率的に学習を進めることが可能になります。

LangChain、評価額1900億円でユニコーン入り

驚異的な成長スピード

2022年にOSSとして始動
23年4月にシードで1000万ドル調達
1週間後にシリーズAで2500万ドル調達
評価額1年半で6倍以上

AIエージェント開発基盤

LLMアプリ開発の課題を解決
Web検索やDB連携を容易に
GitHubスターは11.8万超
エージェント構築基盤へと進化

AIエージェント開発のオープンソース(OSS)フレームワークを提供するLangChainが10月21日、1億2500万ドル(約187億円)の資金調達を発表しました。これにより、同社の評価額は12億5000万ドル(約1900億円)に達し、ユニコーン企業の仲間入りを果たしました。今回のラウンドはIVPが主導し、新たにCapitalGやSapphire Venturesも参加。AIエージェント構築プラットフォームとしての進化を加速させます。

同社の成長は驚異的です。2022年にOSSプロジェクトとして始まった後、2023年4月にBenchmark主導で1000万ドルのシードラウンドを、そのわずか1週間後にはSequoia主導で2500万ドルのシリーズAラウンドを完了。当時2億ドルと報じられた評価額は、わずか1年半余りで6倍以上に跳ね上がったことになります。

LangChainは、初期の大規模言語モデル(LLM)を用いたアプリ開発における課題を解決し、一躍注目を集めました。Web検索、API呼び出し、データベースとの対話といった、LLMが単体では不得手な処理を容易にするフレームワークを提供。開発者から絶大な支持を得ており、GitHubでのスター数は11.8万を超えています。

最先端のモデルメーカーがインフラ機能を強化する中で、LangChainも単なるツールからプラットフォームへと進化を遂げています。今回の発表に合わせ、エージェントビルダーの「LangChain」やオーケストレーションツール「LangGraph」など主要製品のアップデートも公開。AIエージェント開発のハブとしての地位を確固たるものにしています。

AIが医療データを可視化・分析

活用技術

Amazon BedrockのAI基盤
LangChainで文書処理
StreamlitでUI構築

主な機能

自然言語での対話的分析
データの動的可視化機能
複数のAIモデル選択可能

導入のポイント

Guardrailsでの利用制限

AWSは、Amazon BedrockやLangChain、Streamlitを活用した医療レポート分析ダッシュボードを開発しました。自然言語での対話と動的な可視化を通じて、複雑な医療データの解釈を支援します。

このソリューションは、Amazon BedrockのAI基盤、LangChainの文書処理、StreamlitのUI技術を組み合わせています。これにより、医療データへのアクセスと分析が容易になります。

ユーザーはダッシュボード上で自然言語で質問すると、AIがレポート内容を解釈して回答します。健康パラメータの推移を示すグラフによる可視化機能も搭載されています。

このシステムの強みは、会話の文脈を維持しながら、継続的な対話分析を可能にする点です。これにより、より深く、インタラクティブなデータ探索が実現します。

医療データを扱う上で、セキュリティコンプライアンスは不可欠です。実運用では、データ暗号化やアクセス制御といった対策が求められます。

特にAmazon Bedrock Guardrailsを設定し、AIによる医療助言や診断を厳しく制限することが重要です。役割はあくまでデータ分析と解釈に限定されます。

この概念実証は、生成AIが医療現場の生産性と意思決定の質を高める大きな可能性を秘めていることを示しています。

LangChain CEO提言:AIシステム開発はノーコードかコードかの二極構造へ

ワークフローとエージェント

ワークフロー予測可能性を優先する
エージェント自律性・抽象化を優先する
VWBは実際はエージェントではなくワークフロー構築

ビジュアルビルダーの欠点

非技術者にとって導入障壁は低いとは限らない
複雑化するとUIでの管理が破綻

最適解の二極化戦略

低複雑度:シンプルで信頼性の高いノーコードエージェント
高複雑度:分岐・並列処理にはコードによるワークフロー
コード生成の進化が高複雑度の敷居を下げる

AIフレームワーク大手LangChainのハリソン・チェイスCEOは、OpenAIなどが参入する「ビジュアルワークフロービルダー(VWB)」市場に対して、懐疑的な見解を示しました。同氏は、VWBは真の「エージェントビルダー」ではなく、将来的にその役割は「シンプルなノーコードエージェント」と「コードによる高複雑度ワークフロー」の二極に分化し、VWBは淘汰されると提言しています。

VWBは非技術者によるAI構築を目的としていますが、チェイス氏はこの導入障壁が低いという前提を否定します。複雑なタスクを扱う場合、すぐにノード(要素)とエッジ(接続)が絡み合い、UI上での管理が極めて困難になります。特に、高い信頼性が求められるシステム設計においては、VWBは実用的な選択肢とはなり得ないのが現状です。

AIシステムの構築において、予測可能性が高いが自律性に欠けるものが「ワークフロー」、自律性が高いが予測しにくいのが「エージェント」です。VWBは基本的に複雑な処理の経路を視覚化する「ワークフロー」であり、真の自律的なエージェント構築には適していません

今後のAIシステム開発の最適解は、複雑性に応じて二極化します。低複雑度のユースケースでは、プロンプトとツールのみで構成されるシンプルな「ノーコードエージェントが主流になります。モデルの性能向上に伴い、エージェントが対応可能なタスクの範囲は拡大すると予想されます。

一方、高度な分岐ロジックや並列処理を必要とする高複雑度のタスクには、やはり「コードによるワークフロー」が不可欠です。LangChainが開発するLangGraphなどがこれに当たります。しかし、コード生成コストがゼロに近づくことで、非技術者でもこの領域に参入しやすくなると期待されています。

LangChainは、すでに存在するVWBに追従せず、よりシンプルなノーコードエージェントの作成支援と、LLMによる高品質なワークフローコード生成の改善に注力すべきだと結論づけています。これは、AI開発ツール市場における明確な戦略転換を意味します。