事後学習(モデル学習手法・技術)に関するニュース一覧

軽量AI「Nomos 1」、難関数学競技で世界2位相当の性能

圧倒的な数学性能と効率性

難関数学競技で世界2位相当の87点
わずか30億アクティブパラメータの軽量設計
コンシューマー機で動作する高効率モデル

人間を模した推論プロセス

難問に資源を集中させる優先度システム
自己採点とトーナメントによる解の選定
ベースモデルの性能を3倍以上に引き上げ

ビジネスへの示唆

自社インフラで運用可能な高度推論AI
巨大モデルに迫る小規模モデルの可能性

米新興のNous Researchは、数学推論に特化したオープンソースモデル「Nomos 1」を発表しました。世界最難関とされるパトナム数学競技会で、今年度の参加者中2位に相当する87点を記録。巨大テック企業の独壇場だった領域に、軽量かつ高性能なモデルで風穴を開けました。

特筆すべきは、その効率性です。GoogleOpenAIが兆単位のパラメータを要するのに対し、Nomos 1は実効わずか30億パラメータで動作します。ベースモデル単体では24点でしたが、独自の事後学習推論技術により、トップレベルの人間と同等のスコアを叩き出しました。

高性能の秘密は、人間の思考プロセスを模した「推論ハーネス」にあります。AIが並列して問題を解き、自己採点で難易度を判断。計算資源を難問へ優先的に配分し、最終的に複数の回答候補からトーナメント形式で正解を選定する仕組みを採用しています。

DeepSeekなどの競合モデルはより高得点を記録していますが、Nomos 1はコンシューマー機で動作可能な点が革命的です。企業はAPI経由でデータを外部に出すことなく、自社のローカル環境で高度な数学的検証や複雑なモデリングを実行できるようになります。

今回の成果は、賢い学習手法を用いれば小規模モデルでも巨大モデルに拮抗できることを示唆しています。コストや秘匿性が重視されるビジネス現場において、自社専用の「AI数学者」を持つことが現実的な選択肢となりつつあります。

NVIDIA、Graph500で世界新記録 GPUがCPU領域を凌駕

グラフ処理で世界一の性能

H100クラスターがGraph500で首位を獲得
毎秒410兆エッジを探索する圧倒的処理速度
競合比で2倍の性能を達成

驚異的なコスト効率

わずか1/9のノード数で記録達成
費用対効果は競合システムの3倍以上
エネルギー効率もCPUの4.5倍

AIと計算の未来

推論時のスケーリングが次の焦点
複雑なスパース処理GPUへ移行
自律型AIやロボティクスへ応用拡大

NVIDIAは2025年12月、CoreWeaveと共同構築したH100 GPUクラスターにより、大規模グラフ処理性能を競う「Graph500」で世界新記録を樹立しました。これまでCPUが主役だった複雑なデータ処理領域においても、GPUが圧倒的な優位性を示し、計算インフラの歴史的な転換点を迎えています。

今回の記録では、毎秒410兆回のエッジ探索(TEPS)を達成しました。特筆すべきは、競合システムの2倍以上の性能を、わずか約9分の1のノード数で実現した点です。これは費用対効果において3倍以上の改善を意味し、企業のインフラ投資効率を劇的に高めます。

グラフ処理はデータが不規則で疎(スパース)なため、従来はCPUの独壇場でした。しかしNVIDIAは、通信と計算をGPU上で完結させる新技術を導入し、CPUを経由するボトルネックを解消しました。これにより、AI以外の科学技術計算でもGPUへの移行が加速します。

エネルギー効率を競う「Green500」でも、NVIDIAGPU搭載システムが上位5位を独占しました。CPUシステムと比較して平均4.5倍の効率を誇り、データセンター電力制約が厳しくなる中、持続可能な計算リソースの確保において決定的な解決策となります。

AI開発において、従来の「事前学習」「事後学習」に加え、推論時に計算量を増やす「テストタイム・スケーリング」が重要になっています。推論段階での高度な推論や計画能力が求められるようになり、学習完了後も強力なGPUインフラが必要不可欠です。

この計算能力の飛躍は、物理世界で活動するロボットや、自律的にタスクをこなすエージェントの実用化を後押しします。GPUは単なる演算装置から、全産業の生産性を底上げする「デジタル労働力」の基盤へと進化しています。

高品質AIデータで新星、Datacurveが22億円調達

独自の人材獲得戦略

専門家向け報奨金制度
データ収集を消費者製品と定義
金銭より優れたUXを重視

ポストScale AI時代の潮流

巨人Scale AIのCEO退任が好機
複雑な強化学習データ需要増
ソフトウェア開発から多分野へ展開

注目の資金調達

シリーズAで1500万ドルを確保
著名VCAI企業の従業員も出資

AI向け高品質データを提供するスタートアップ、Datacurveが10月9日、シリーズAで1500万ドル(約22.5億円)の資金調達を発表しました。Yコンビネータ出身の同社は、業界最大手Scale AIの牙城を崩すべく、熟練エンジニアを惹きつける独自の報奨金制度と優れたユーザー体験を武器に、複雑化するAIの学習データ需要に応えます。

同社の強みは、専門家を惹きつける「バウンティハンター」制度です。高度なスキルを持つソフトウェアエンジニアに報奨金を支払い、質の高いデータセットを収集します。共同創業者のセレナ・ゲ氏は「これは単なるデータラベリング作業ではない。消費者向け製品として捉え、最高の体験を提供することに注力している」と語ります。

この動きの背景には、AIデータ市場の大きな変化があります。最大手Scale AIの創業者アレクサンダー・ワン氏がMetaへ移籍したことで、市場に好機が生まれたと投資家は見ています。また、AIモデルの高度化に伴い、単純なデータセットではなく、複雑な強化学習(RL)環境の構築に必要な、質・量ともに高いデータへの需要が急増しています。

今回の資金調達は、Chemistryが主導し、DeepMindVercelAnthropicOpenAIといった名だたる企業の従業員も参加しました。シードラウンドでは元Coinbase CTOのバラジ・スリニヴァサン氏も出資しており、技術と市場の両面から高い評価を得ていることが伺えます。

Datacurveはまずソフトウェアエンジニアリング分野で地位を確立し、将来的にはそのモデルを金融、マーケティング、医療などの専門分野へも展開する計画です。専門家自らのドメイン知識を活かせるインフラを構築することで、ポストトレーニングデータ収集の新たな標準を築くことを目指しています。

AIブームが巨大企業を置き去りにする可能性

基盤モデルの価値変化

基盤モデルコモディティ化
事前学習の効果が鈍化
事後学習強化学習へ注目が移行

競争環境の変化

アプリケーション層での競争が激化
オープンソース代替案の台頭
低マージン事業への転落リスク

企業戦略の再構築

ファインチューニングUI設計が重要
基盤モデル企業の優位性は縮小
新たな競争優位性の模索が必要

AIブームが進む中、基盤モデルを開発する巨大企業が置き去りにされる可能性が浮上している。かつては「GPTラッパー」と軽視されたAIスタートアップが、特定タスク向けのモデルカスタマイズやインターフェース設計に注力し始めたからだ。

基盤モデルの価値が変化している背景には、事前学習のスケーリング効果が鈍化している事実がある。AIの進歩は止まっていないが、超大規模モデルの初期利益は減少し、事後学習強化学習が新たな進化の源泉となっている。

競争環境も変化している。スタートアップGPT-5ClaudeGeminiなど基盤モデルを互換性のある部品として扱い、ユーザーが気づかない間にモデルを切り替えることを前提に設計している。

この状況は、OpenAIAnthropicのような基盤モデル企業を低マージンのコモディティ事業のバックエンドサプライヤーに変えるリスクをはらんでいる。ある創業者はこれを「スターバックスにコーヒー豆を売るようなもの」と表現した。

もちろん、基盤モデル企業が完全に脱落するわけではない。ブランド力、インフラ、巨額の資金など持続的な優位性も存在する。しかし、昨年までの「より大きな基盤モデルを構築する」という戦略は魅力を失いつつある。

AI開発の速いペースを考えると、現在の事後学習への注目も半年後には逆転する可能性がある。最も不確実なのは、汎用人工知能への競争が医薬品や材料科学で新たなブレークスルーを生み出す可能性だ。

結局のところ、AIの価値は基盤モデル自体ではなく、それを活用するアプリケーションやユーザー体験に移行しつつある。企業はこの変化に適応し、新たな競争優位性を築く必要に迫られている。