AI動画は物理法則を理解したか?Google論文の検証
DeepMindの野心的な主張
Google Veo 3の能力を検証
ゼロショットでのタスク解決を主張
汎用的な視覚基盤モデルへの道筋
見えてきた性能の限界
一部タスクでは高い一貫性
ロボットの動作や画像処理で成功
全体としては一貫性に欠ける結果
「世界モデル」構築はまだ途上
出典:Ars Technica
詳細を読む
Google DeepMindが、最新のAI動画モデル「Veo 3」が物理世界をどの程度理解できるかを探る研究論文を発表しました。論文では、Veo 3が訓練データにないタスクもこなす「世界モデル」への道を歩んでいると主張しますが、その結果は一貫性に欠け、真の物理世界のシミュレーション能力には依然として大きな課題があることを示唆しています。
研究者らは、Veo 3が明示的に学習していない多様なタスクを解決できる「ゼロショット学習者」であると主張します。これは、AIが未知の状況に対しても柔軟に対応できる能力を持つことを意味し、将来的に汎用的な視覚基盤モデルへと進化する可能性を示唆するものです。
確かに、一部のタスクでは目覚ましい成果を上げています。例えば、ロボットの手が瓶を開けたり、ボールを投げたり捕ったりする動作は、試行を通じて安定して説得力のある動画を生成できました。画像のノイズ除去や物体検出といった領域でも、ほぼ完璧に近い結果を示しています。
しかし、その評価には注意が必要です。外部の専門家は、研究者たちが現在のモデルの能力をやや楽観的に評価していると指摘します。多くのタスクにおいて結果は一貫性を欠いており、現在のAI動画モデルが、現実世界の複雑な物理法則を完全に理解していると結論付けるのは時期尚早と言えるでしょう。
経営者やエンジニアにとって重要なのは、この技術の現状と限界を冷静に見極めることです。AI動画生成は強力なツールとなり得ますが、物理的な正確性が求められるシミュレーションやロボット工学への応用には、まだ慎重な検証が必要です。