DeepSeek(企業)に関するニュース一覧

中国発MiniMax-M2、オープンソースLLMの新王者

主要指標でOSSの首位

第三者機関の総合指標で1位
独自LLMに迫るエージェント性能
コーディングベンチでも高スコア

企業導入を促す高効率設計

商用利用可のMITライセンス
専門家混合(MoE)で低コスト
少ないGPU運用可能
思考プロセスが追跡可能

中国のAIスタートアップMiniMaxが27日、最新の大規模言語モデル(LLM)「MiniMax-M2」を公開しました。第三者機関の評価でオープンソースLLMの首位に立ち、特に自律的に外部ツールを操作する「エージェント性能」で独自モデルに匹敵する能力を示します。商用利用可能なライセンスと高い電力効率を両立し、企業のAI活用を加速させるモデルとして注目されます。

第三者評価機関Artificial Analysisの総合指標で、MiniMax-M2オープンソースLLMとして世界1位を獲得しました。特に、自律的な計画・実行能力を測るエージェント関連のベンチマークでは、GPT-5Claude Sonnet 4.5といった最先端の独自モデルと肩を並べるスコアを記録。コーディングやタスク実行能力でも高い性能が確認されています。

M2の最大の特長は、企業での導入しやすさです。専門家の知識を組み合わせる「MoE」アーキテクチャを採用し、総パラメータ2300億に対し、有効パラメータを100億に抑制。これにより、わずか4基のNVIDIA H100 GPUでの運用を可能にし、インフラコストを大幅に削減します。さらに、商用利用を認めるMITライセンスは、企業が独自に改良・展開する際の障壁を取り払います。

高いエージェント性能を支えるのが、独自の「インターリーブ思考」形式です。モデルの思考プロセスがタグで明示されるため、論理の追跡と検証が容易になります。これは、複雑なワークフローを自動化する上で極めて重要な機能です。開発者は構造化された形式で外部ツールやAPIを連携させ、M2を中核とした高度な自律エージェントシステムを構築できます。

M2の登場は、オープンソースAI開発における中国勢の台頭を象徴しています。DeepSeekやアリババのQwenに続き、MiniMaxもまた、単なるモデルサイズではなく、実用的なエージェント能力やコスト効率を重視する潮流を加速させています。監査や自社でのチューニングが可能なオープンモデルの選択肢が広がることは、企業のAI戦略に大きな影響を与えるでしょう。

アント、1兆パラメータAI公開 強化学習の壁を突破

1兆パラメータモデルRing-1T

中国アントグループが開発
1兆パラメータのオープンソース推論モデル
数学・論理・コード生成に特化
ベンチマークGPT-5に次ぐ性能

独自技術で学習効率化

強化学習ボトルネックを解決
学習を安定化させる新手法「IcePop」
GPU効率を高める「C3PO++」を開発
激化する米中AI覇権争いの象徴

中国のアリババ系列企業アントグループが、1兆個のパラメータを持つオープンソースの推論AIモデル「Ring-1T」の技術詳細を公開しました。このモデルは、独自開発した最適化手法により、大規模モデルの学習における強化学習のボトルネックを解決した点が特徴です。OpenAIの「GPT-5」やGoogleの「Gemini」など米国勢に対抗し、激化する米中間のAI覇権争いで存在感を示す狙いがあります。

「Ring-1T」は、数学、論理問題、コード生成、科学的問題解決に特化して設計されています。各種ベンチマークテストでは、多くの項目でOpenAIGPT-5に次ぐ高いスコアを記録しました。特に、同社がテストしたオープンウェイトモデルの中では最高の性能を示し、中国企業の技術力の高さを証明しています。

この成果の背景には、超大規模モデルの学習を効率化する三つの独自技術があります。研究チームは、学習プロセスを安定させる「IcePop」、GPUの遊休時間をなくしリソースを最大限活用する「C3PO++」、非同期処理を可能にするアーキテクチャ「ASystem」を開発。これらが、1兆パラメータ規模のモデル学習を現実のものとしました。

特に注目すべきは、強化学習における課題へのアプローチです。従来、大規模モデルの強化学習は計算コストと不安定性が大きな障壁でした。「IcePop」は、学習を妨げるノイズの多い情報を抑制し、安定した性能向上を実現します。この技術革新は、今後のAIエージェント開発など応用分野の発展にも大きく貢献する可能性があります。

今回の発表は、DeepSeekやアリババ本体の「Qwen」シリーズに続く、中国発の高性能モデルの登場を意味します。米国の巨大テック企業を猛追する中国の勢いはとどまるところを知りません。「Ring-1T」のようなオープンソースモデルの公開は、世界中の開発競争をさらに加速させることになりそうです。

DeepSeek、テキストを画像化し10倍圧縮する新AI

テキスト処理の常識を覆す

テキストを画像として表現
従来のトークンより最大10倍効率化
LLMの常識を覆すパラダイム転換

巨大コンテキストと高効率

1000万トークン級の文脈へ
単一GPU日産20万ページ処理
トークナイザー問題を根本的に解決

オープンソースで開発加速

モデルやコードを完全公開
圧縮データ上の推論能力が今後の課題

中国のAI研究企業DeepSeekは、テキスト情報を画像として処理することで最大10倍に圧縮する新しいオープンソースAIモデル「DeepSeek-OCR」を発表しました。この技術は、大規模言語モデル(LLM)が一度に扱える情報量(コンテキストウィンドウ)を劇的に拡大する可能性を秘めており、従来のテキスト処理の常識を覆す画期的なアプローチとして注目されています。

このモデルの核心は、テキストを文字の集まり(トークン)としてではなく、一枚の「絵」として捉え、視覚情報として圧縮する点にあります。従来、テキスト情報の方が視覚情報より効率的に扱えると考えられてきましたが、DeepSeek-OCRはこの常識を覆しました。OpenAIの共同創業者であるAndrej Karpathy氏も「LLMへの入力は全て画像であるべきかもしれない」と述べ、この発想の転換を高く評価しています。

その性能は驚異的です。実験では、700〜800のテキストトークンを含む文書をわずか100の視覚トークンで表現し、97%以上の精度で元のテキストを復元できました。これは7.5倍の圧縮率に相当します。実用面では、単一のNVIDIA A100 GPUで1日に20万ページ以上を処理できる計算となり、AIの学習データ構築などを大幅に加速させることが可能です。

この技術革新がもたらす最大のインパクトは、LLMのコンテキストウィンドウの飛躍的な拡大です。現在の最先端モデルが数十万トークンであるのに対し、このアプローチは1000万トークン級の超巨大な文脈の実現に道を開きます。企業の全社内文書を一度に読み込ませて対話するなど、これまで不可能だった応用が現実のものとなるかもしれません。

テキストの画像化は、長年AI開発者を悩ませてきた「トークナイザー」の問題を根本的に解決する可能性も秘めています。文字コードの複雑さや、見た目が同じでも内部的に異なる文字として扱われるといった問題を回避できます。さらに、太字や色、レイアウトといった書式情報も自然にモデルへ入力できるため、よりリッチな文脈理解が期待されます。

DeepSeekはモデルの重みやコードを全てオープンソースとして公開しており、世界中の研究者がこの新技術を検証・発展させることが可能です。一方で、圧縮された視覚情報の上で、LLMがどの程度高度な「推論」を行えるかは未知数であり、今後の重要な研究課題となります。この挑戦的なアプローチが、次世代AIの標準となるか、業界全体の注目が集まります。

多機能とSNS連携で覇権、ByteDanceのAI『Doubao』

中国で最も人気なAIアプリ

月間利用者1.57億人中国首位
世界でも4番目に人気の生成AI
親しみやすいアバターとUI/UX

成功を支える『全部入り』戦略

チャットから動画生成まで多機能
AIに不慣れな層も取り込む設計
TikTok(Douyin)とのシームレスな連携

バイラル設計とエコシステム

SNSでの共有を促すバイラル設計
競合からユーザーの4割が流入
自動車など他デバイスへの展開

TikTokを運営する中国ByteDance社が開発したAIアシスタント「Doubao(豆包)」が、中国市場を席巻しています。2025年8月には月間アクティブユーザー数が1億5700万人に達し、競合のDeepSeekを抜いて国内首位となりました。その成功の裏には、チャットから画像動画生成までを網羅する多機能性と、ショート動画アプリ「Douyin(抖音)」と連携した巧みなバイラル戦略があります。

Doubaoの躍進は、データにも裏付けられています。中国のデータインテリジェンス企業QuestMobileによると、月間アクティブユーザー数は1億5700万人。競合のDeepSeekは1億4300万人で2位に後退しました。また、ベンチャーキャピタルa16zの調査では、ChatGPTGeminiに次ぐ世界で4番目に人気の生成AIアプリにランクインしています。

Doubaoの最大の特徴は「全部入り」とも言える包括的な機能です。テキスト対話だけでなく、画像生成、短い動画作成、データ分析、AIエージェントのカスタマイズまで、一つのアプリで完結します。これはまるで、ChatGPT、Midjourney、Sora、Character.aiといった複数の最先端ツールを一つに集約したような体験をユーザーに提供するものです。

なぜ、この「全部入り」戦略が受け入れられたのでしょうか。それは、DoubaoがAIに詳しくない一般ユーザーを明確にターゲットにしているからです。親しみやすいアバターやカラフルなUIに加え、テキスト入力より音声動画での対話を好む層を取り込み、AI利用のハードルを劇的に下げることに成功しました。

成功のもう一つの柱が、ByteDanceの得意とするSNS連携とバイラル設計です。ユーザーはDoubaoで生成したコンテンツを、Douyin(中国TikTok)ですぐに共有できます。逆にDouyinの動画要約をDoubaoにさせることも可能です。この利便性と楽しさが爆発的な拡散を生み、ユーザーエンゲージメントを高めています。

競合のDeepSeekがモデルの性能や論理的タスクに注力する一方、Doubaoは消費者向けアプリとしての完成度で差をつけました。QuestMobileのデータでは、DeepSeekを離れたユーザーの約4割がDoubaoに移行したとされています。これは、ByteDanceが長年培ってきた「アプリ工場」としての開発力が発揮された結果と言えるでしょう。

ByteDanceはスマートフォンの枠を超え、Doubaoをエコシステムの中核に据えようとしています。すでにスマートグラスや自動車メーカーとの提携を進めており、車載アシスタントやAIコンパニオンとしての搭載が始まっています。Doubaoは、私たちの生活のあらゆる場面に浸透するプラットフォームを目指しているのです。

ソブリンAI、米中技術覇権の新たな主戦場に

米国のソブリンAI戦略

OpenAIが各国政府と提携
国家によるAI統制を支援
非民主主義国との連携に懸念も

中国のオープンソース攻勢

Alibabaのモデルは3億DL超
来年には米国を凌駕する可能性

真のAI主権をめぐる論点

主権にはオープンソースが必須との声
クローズドとオープンの両立も可能

OpenAIをはじめとするテクノロジー企業が、「ソブリンAI」の構築支援を各国で進めています。ソブリンAIとは、各国が自国の管理下でAIインフラを開発・運用する能力を指し、米中間の技術覇権争いの新たな主戦場となりつつあります。米国が同盟国との連携を深める一方、中国オープンソースモデルで世界的な影響力を急速に拡大しています。

OpenAIはアラブ首長国連邦(UAE)などの政府と提携し、大規模なデータセンター建設を含むソブリンAIシステム構築を支援しています。この動きは米国政府とも連携しており、同盟国が中国の技術に依存するのを防ぐという戦略的な狙いがあります。米国の技術を世界に普及させることで、地政学的な優位性を確保しようとしています。

しかし、UAEのような非民主主義国との提携には懸念の声も上がっています。かつて米国は、経済的な関与が中国の民主化を促すと期待しましたが、結果的に権威主義体制を強めることになりました。AI技術の提供が同様の結果を招かないか、過去の教訓が問い直されています。OpenAIは政府からの要請があっても情報検閲は行わないと明言しています。

対する中国は、オープンソース戦略で猛追しています。AlibabaやTencent、DeepSeekといった企業が公開した高性能な基盤モデルは、世界中で広く採用されています。特にAlibabaの「Qwen」ファミリーは3億回以上ダウンロードされ、日本を含む各国のスタートアップが自国語対応モデルの開発基盤として活用しています。

オープンソースAIモデルをホストするHugging FaceのCEOは、「真の主権はオープンソースなしにはあり得ない」と指摘します。モデルの内部を完全に検証・制御できるためです。中国企業はこの戦略により驚異的な速さで技術力を向上させ、5年前の遅れを取り戻し、今や米国と互角のレベルに達したと分析されています。

AIの国家主権をめぐる競争は、クローズドモデルを推進する米国勢と、オープンソースで勢力を拡大する中国勢という構図を呈しています。OpenAIは両アプローチの共存が可能との見方を示していますが、どちらが次世代のグローバルスタンダードを握るのか。この動向は、各国の事業戦略を左右する重要な要素となるでしょう。

米Reflection AI、3000億円調達 中国勢に対抗

驚異的な資金調達

DeepMind研究者が設立
20億ドル(約3000億円)を調達
企業価値は80億ドル、7カ月で15倍
Nvidiaなど有力投資家が参加

オープンAIで覇権を狙う

中国AI企業DeepSeekに対抗
米国発のフロンティアAI研究所へ
モデルの重みは公開、データは非公開
大企業や政府向けの収益モデル

Google DeepMindの研究者が設立した米国のAIスタートアップ、Reflection AIが20億ドル(約3000億円)の巨額資金調達を発表しました。企業価値はわずか7カ月で15倍の80億ドルに急騰。同社は、急成長する中国のAI企業DeepSeekなどに対抗し、米国主導の「オープンなフロンティアAI研究所」となることを目指します。

Reflection AIは2024年3月、DeepMindGemini開発を主導したミーシャ・ラスキン氏らが設立。AlphaGo共同開発者も参画し、トップ人材約60名を確保しました。巨大テック企業の外でもフロンティアモデルを構築できると証明することが狙いです。

ラスキンCEOは、中国DeepSeekなどの台頭に強い危機感を示します。「何もしなければ、知能のグローバルスタンダードが他国製になる」と述べ、米国主導の必要性を強調。法的な懸念から欧米企業は中国製モデルを使いにくく、代替選択肢が求められています。

同社の「オープン」戦略は、Metaなどと同様に限定的です。モデルの動作を決める中核パラメータ「重み」は公開する一方、学習データや手法は非公開とします。誰もがモデルを利用・改変できる「重み」の公開が最も重要だという考えです。

収益化の柱は、大企業や政府です。自社インフラでAIを運用し、コスト管理やカスタマイズをしたい大企業はオープンモデルを求めます。また、各国がAIモデルを開発・管理する「ソブリンAI」の需要を取り込むことも重要な戦略です。

調達資金は、モデル学習に必要な計算資源の確保に充てられます。来年初頭には、数兆トークン規模のデータで学習した最初のフロンティア言語モデルをリリースする計画です。まずテキストモデルから始め、将来的にはマルチモーダル機能も搭載します。

AI計算コスト削減の鍵、スパースアテンション

従来AIの計算課題

AIの文脈理解を担う「アテンション」
入力長の二乗で計算コストが増加
長文対話処理のボトルネックに

新技術への期待

DeepSeek社が新技術をテスト
関連性の高い情報に絞り計算
処理コストの大幅な削減に期待
OpenAIも類似技術を採用か

中国のAI企業DeepSeek社が、AIモデルの処理コストを大幅に削減する可能性のある新技術「スパースアテンション」をテストしています。この技術は、AIが文脈を理解する際の計算量を劇的に減らし、これまでボトルネックとなっていた長文対話の処理性能を向上させる可能性があります。AIの運用コスト削減と応用範囲拡大への貢献が期待されます。

AI、特に大規模言語モデルは「アテンション」という仕組みで単語間の関連性を計算し、文脈を理解します。しかし、2017年に登場した画期的なTransformerアーキテクチャでは、入力された全ての単語の組み合わせを総当たりで比較するため、計算コストが入力長の二乗で増加するという根本的な課題を抱えていました。

この「二乗の呪い」は深刻です。例えば、1,000語の文章では100万回、1万語では1億回もの比較計算が必要になります。これにより、ChatGPTのような対話型AIでは、会話が長くなるほど応答速度が低下するなどの性能ペナルティが発生していました。新しい応答のたびに、全履歴を再計算するためです。

DeepSeek社がテストする「スパースアテンション」は、この問題を解決するアプローチです。全ての単語を比較するのではなく、文脈上関連性の高い単語の組み合わせに絞って計算を行います。これにより、計算量を大幅に削減し、コストと性能のボトルネックを解消することを目指します。

OpenAIGPT-5など、最先端のモデルでも同様の技術が採用されていると推測されています。スパースアテンションの普及は、AIの運用コストを引き下げ、より長く複雑なタスクを扱えるようにする鍵となります。今後のAI開発の費用対効果を大きく左右する技術として注目されます。

DeepSeek、APIコスト半減の新AIモデル発表

APIコストを半減する新技術

長い文脈での推論コスト削減
APIコストが最大で半減
新技術「スパースアテンション」
実験モデル「V3.2-exp」を公開

効率化を実現する2段階選択

まず重要部分を抜粋・優先順位付け
次に抜粋内からトークンを選択
サーバー負荷を大幅に軽減
Hugging Faceで利用可能

中国のAI企業DeepSeekは29日、新しい実験的AIモデル「V3.2-exp」を発表しました。このモデルは「スパースアテンション」と呼ばれる新技術を搭載しており、長い文章や大量のデータを処理する際の推論コスト(APIコスト)を最大で半減させる可能性を秘めています。AIの運用コスト削減は業界全体の課題であり、今回の発表は大きな注目を集めています。

新技術の核心は、処理情報を効率的に絞り込む2段階の仕組みです。まずシステムが入力文から重要部分を抜粋し、次にその中から処理に必要な最小限のトークンを選択します。この選択と集中のアプローチにより、関連性の低い情報処理を省略し、サーバー負荷を大幅に軽減するのです。

AIモデルの運用コスト、特に「推論コスト」の削減は、AIサービスを普及させる上で極めて重要です。今回の試みは、AIの基本構造であるTransformerアーキテクチャの効率化を目指すもの。特に大量の文書読解や複雑な対話など、長い文脈を扱う応用でのコストメリットは計り知れません。

この「V3.2-exp」モデルはオープンウェイトとして、開発者プラットフォームのHugging Faceで既に公開されています。誰でも自由に利用し、その性能を検証できるため、DeepSeekが主張するコスト削減効果が実証される日も近いでしょう。今後、第三者による客観的な評価やさらなる改良が期待されます。

DeepSeek中国に拠点を置く企業で、年初には独自の学習手法を用いたモデルで業界を驚かせました。今回の発表は、米中間の技術競争という側面だけでなく、AI業界全体のコスト効率化という共通課題に対する一つの解を示した点で意義深いと言えます。この技術が米国の主要プロバイダーにも影響を与える可能性があります。

AIモデル小型化の鍵「知識蒸留」、高性能を維持しコスト削減

AI業界で、モデルの小型化とコスト削減を実現する「知識蒸留」技術が重要性を増しています。これは、大規模で高コストな「教師モデル」が持つ知識を、より小型で効率的な「生徒モデル」に継承させる手法です。なぜこの技術が、AI開発の効率化を目指す企業にとって不可欠なのでしょうか。その仕組みと可能性を探ります。 このアイデアは、AI研究の権威であるジェフリー・ヒントン氏らが2015年に発表した論文に遡ります。その核心は、教師モデルが持つ「ソフトターゲット」と呼ばれる確率的な情報を活用することにあります。単なる正解・不正解だけでなく、どの選択肢をどの程度の確率で予測したかという情報まで生徒モデルに教え込むのです。 ヒントン氏はこの詳細な情報を「ダークナレッジ(暗黒知)」と呼びました。例えば画像認識で「犬」の画像を「猫」と間違える確率は、「車」と間違える確率より高いはずです。この「間違い方の近さ」を学ぶことで、生徒モデルは世界の構造をより深く、そして効率的に理解できるようになります。 知識蒸留は、AIモデルが巨大化し運用コストが高騰する中で急速に普及しました。例えば、Googleが開発した言語モデル「BERT」に対し、その知識を蒸留した小型版「DistilBERT」が登場。現在ではGoogleOpenAIなどもサービスとして提供するほど、AI開発における一般的な手法となっています。 最近では、より複雑な推論を行う「思考の連鎖」モデルの学習にも応用されています。カリフォルニア大学バークレー校の研究室は、知識蒸留を用いてわずか450ドル未満のコストで高性能なモデルを開発。この技術がAI開発の基本的なツールであることを改めて示しました。 知識蒸留は、AI導入の障壁となる高コスト問題を解決する鍵となります。自社で巨大モデルをゼロから開発せずとも、既存モデルから知識を継承し、特定の用途に特化した軽量なモデルを安価に構築できるため、多くの企業にとって現実的な選択肢となるでしょう。