TPU(ハードウェア)に関するニュース一覧

Google新AI半導体、性能4倍でAnthropicと大型契約

新チップ「Ironwood」

第7世代TPU性能4倍を実現
推論時代の需要に対応する設計
最大9,216チップを単一システム化
ArmベースCPU「Axion」も拡充

Anthropicとの提携

Anthropic最大100万個の利用契約
数十億ドル規模の歴史的契約
Claudeモデルの安定供給を確保

Google Cloudが2025年11月6日、第7世代AI半導体「Ironwood」を発表しました。従来比4倍の性能向上を実現し、AI企業Anthropicが最大100万個のチップを利用する数十億ドル規模の大型契約を締結。AIモデルの「トレーニング」から「推論(サービング)」への市場シフトに対応し、NVIDIAの牙城に挑むGoogle独自開発戦略が大きな節目を迎えました。

「Ironwood」は、AIモデルを訓練する段階から、数十億のユーザーにサービスを提供する「推論の時代」の要求に応えるべく設計されています。最大9,216個チップを単一のスーパーコンピュータとして機能させる「ポッド」アーキテクチャを採用。Google独自の高速インターコネクト技術により、膨大なデータを効率的に処理し、高い信頼性を実現します。

この新技術の価値を最も強く裏付けたのが、AIモデル「Claude」を開発するAnthropicとの契約です。最大100万個という空前の規模のチップへのアクセスを確保。これはAIインフラ史上最大級の契約と見られ、Anthropicは「価格性能比と効率性」を決定要因に挙げ、Googleの垂直統合戦略の正当性を証明する形となりました。

Googleの戦略は、AIアクセラレータ「Ironwood」に留まりません。同時に発表されたArmベースのカスタムCPU「Axion」は、AIアプリケーションを支える汎用的な処理を担当します。これらをソフトウェア群「AI Hypercomputer」で統合し、ハードとソフトの垂直統合による最適化で、NVIDIAが独占する市場に真っ向から挑みます。

この発表は、AIインフラ市場の競争が新たな段階に入ったことを示します。巨額の投資が続く中、汎用的なGPUか、特定の用途に最適化されたカスタムチップか、という路線対立が鮮明になってきました。ユーザーにサービスを届ける「推論」の重要性が増す中で、Googleの長期的な賭けが実を結ぶか、市場の注目が集まります。

グーグル、AIの電力危機を宇宙で解決へ

宇宙データセンター構想

AIの電力需要急増への対応
太陽光発電を利用する衛星群
Google製AIチップTPUを搭載
衛星間は光通信で高速接続

残された技術的課題

宇宙空間での熱管理
システムの長期信頼性の確保
過酷な放射線環境への対策

Googleは11月5日、AIの爆発的な電力需要に対応するため、宇宙空間にデータセンターを設置する壮大な構想「Project Suncatcher」を発表しました。これは太陽光で稼働する衛星群にAIチップを搭載し、地球の資源制約から脱却する試みです。実現には多くの技術的課題が残りますが、AIの持続可能な未来を拓く一手となるでしょうか。

なぜ宇宙なのでしょうか。背景には、AIの凄まじい電力消費があります。一説では2028年までにAIだけで米国全家庭の電力消費の22%に相当する量に達すると予測されています。また、データセンターの冷却には大量の水が必要となり、地球環境への負荷が大きな懸念となっています。

「Project Suncatcher」は、低軌道に多数の小型衛星を打ち上げ、それぞれにGoogle独自のAIアクセラレータ「TPU(Tensor Processing Unit)」を搭載します。動力は太陽光発電で全て賄い、衛星間の通信には高速な自由空間光通信を利用。これにより、宇宙に一つの巨大な計算基盤を構築する計画です。

もっとも、これは「ムーンショット(壮大な挑戦)」であり、課題も山積しています。スンダー・ピチャイCEOも認めるように、宇宙空間の過酷な放射線、真空での熱管理、そして軌道上でのシステムの長期的な信頼性確保が大きなハードルです。初期テストではTPUの放射線耐性が確認されたとしています。

Googleはこのプロジェクトを通じて、AIの計算能力を地球の制約から解放し、需要の伸びに際限なく応えられるソリューションを模索しています。この野心的な試みがAIインフラの新たなフロンティアを切り拓くか、その動向が注目されます。

Google、宇宙AIデータセンターで計算能力を拡張

壮大な宇宙構想

Google新研究計画サンキャッチャー
宇宙空間でのAI計算能力を拡張
TPU搭載衛星をネットワーク

宇宙ならではの利点

常時太陽光で安定した電力供給
地上の最大8倍太陽光発電効率
地上の電力・土地問題を回避

実現への道のり

衛星間の超高速通信が最大の課題
2027年に試作機打ち上げ予定

Googleは2025年11月4日、宇宙空間で機械学習の計算能力を飛躍的に拡張する新研究計画「プロジェクト・サンキャッチャー」を発表しました。AIチップTPU」を搭載した多数の衛星を太陽光発電で稼働させ、ネットワーク化する壮大な構想です。地上のデータセンターが抱える電力消費や土地問題を解決し、AIの可能性を最大限に引き出すことを目指します。

この構想の背景には、AIの急速な発展に伴うデータセンターの爆発的な増加があります。その膨大な電力消費と設置場所の確保は、IT業界全体の大きな課題です。実際、イーロン・マスク氏なども宇宙空間でのデータセンター構想に言及しており、宇宙利用はAIインフラの新たなフロンティアとなりつつあります。

宇宙空間が持つ最大の利点は、ほぼ無限の太陽エネルギーを利用できる点です。「サンキャッチャー」計画では、衛星を常に太陽光が当たる軌道に投入します。宇宙のソーラーパネルは地上の最大8倍も発電効率が高く、安定的かつクリーンな電力でAIを稼働させることが可能になります。

実現には、多くの技術的課題を乗り越える必要があります。最大の難関は、高速で移動する衛星同士を超高速の光通信で接続する技術です。Googleはすでに地上での実験で毎秒1.6テラビットの双方向通信に成功しており、今後さらなるスケールアップを目指す方針です。

Googleはこの計画を、自動運転技術「Waymo」のような長期的な「ムーンショット(壮大な挑戦)」と位置付けています。第一歩として、パートナー企業と共に2027年初頭までに試作衛星2基を打ち上げ、軌道上でのハードウェア性能を検証する予定です。AIの未来を宇宙に託す挑戦が、今まさに始まりました。

脱・投機実行、決定論的CPUがAI性能を予測可能に

投機的実行の限界

予測失敗によるエネルギー浪費
Spectre等の脆弱性リスク
AI処理での性能の不安定化

決定論的実行の革新

時間ベースでの正確な命令実行
パイプライン破棄なくし高効率化
ハードウェア簡素化と低消費電力

AI/MLへのインパクト

ベクトル演算での高スループット
TPUに匹敵する性能を低コストで実現

30年以上主流だったCPUの「投機的実行」に代わる新技術として、「決定論的実行」モデルが登場しました。これは命令を予測に頼らず時間ベースで正確に実行するもので、特にAIや機械学習(ML)の分野で課題だった性能の不安定さを解消します。エネルギー効率とセキュリティを大幅に向上させ、予測可能なパフォーマンスを実現する次世代アーキテクチャとして注目されています。

従来の投機的実行は、命令の実行順序を予測することで高速化を図ってきました。しかし、予測が外れるとパイプラインを破棄・再実行する必要があり、エネルギーの浪費と遅延が発生します。さらに、SpectreやMeltdownといった深刻なセキュリティ脆弱性の温床にもなりました。特にAIワークロードでは、この予測不可能性が性能の大きな足かせとなっていました。

新しい決定論的実行モデルは、予測という「当て推量」を排除します。代わりに「タイムカウンター」と「レジスタスコアボード」という仕組みを利用し、各命令に正確な実行タイミングを割り当てます。データやリソースが利用可能になる瞬間を事前に計算し、計画通りに命令を実行するため、無駄な処理が一切発生しないのです。

このアーキテクチャの最大の利点は、予測可能なパフォーマンスです。処理するデータによって性能が大きく変動する「パフォーマンスクリフ」がなくなり、安定したスループットを実現できます。また、パイプラインの破棄が不要になるため、エネルギー効率が劇的に向上し、ハードウェア設計も簡素化できるというメリットがあります。

決定論的実行は、ベクトル演算や行列演算が多用されるAI/MLワークロードに特に適しています。GoogleTPUのような専用ハードウェアに匹敵するスループットを、より低コストかつ低消費電力で実現する可能性を秘めています。これにより、データセンターからエッジデバイスまで、幅広いAIアプリケーションの性能向上に貢献するでしょう。

開発者にとって、この移行はスムーズです。アーキテクチャはRISC-V命令セットの拡張をベースにしており、GCCやLLVMといった既存のツールチェーンと互換性があります。プログラミングモデルを大きく変えることなく、ハードウェアの予測可能性と効率性の恩恵を受けられるため、よりシンプルに高性能なアプリケーションを開発できます。

かつて投機的実行がCPU設計に革命をもたらしたように、決定論的実行は次のパラダイムシフトとなるのでしょうか。AI時代の到来により、性能の予測可能性と電力効率への要求はかつてなく高まっています。この新しいアプローチは、次世代コンピューティングの鍵を握る重要な技術革新と言えるでしょう。

Google、インドでAI Pro無料提供 巨大市場で攻勢

巨大市場狙うGoogleの一手

通信大手リライアンス・ジオ提携
AI Proを18カ月無料提供
約400ドル相当のサービスをバンドル
若年層から全国の利用者へ順次拡大

激化するインドAI覇権争い

10億人超の世界第2位インターネット市場
PerplexityOpenAIも無料プランで追随
法人向けGemini Enterpriseも展開
巨大テック企業の次なる主戦場に

Googleは10月30日、インドの複合企業リライアンス・インダストリーズと戦略的提携を結び、傘下の通信大手ジオの5Gユーザー数百万人に、AIアシスタントの有料版「AI Pro」を18カ月間無料で提供すると発表しました。世界第2位のインターネット市場であるインドで、急成長するAI分野の主導権を握る狙いです。競合他社の参入も相次いでおり、市場獲得競争が激化しています。

今回の無料提供は、インドでの月額料金1,950ルピー(約22ドル)の「AI Pro」プランが対象です。これには、最新AIモデル「Gemini 2.5 Pro」へのアクセス、AIによる画像動画生成機能の利用上限緩和、研究・学習支援ツール「Notebook LM」、さらにGoogleフォトやGmailで使える2TBのクラウドストレージが含まれ、総額約400ドルに相当します。

提供はまず18歳から25歳の若年層を対象に開始し、その後、全国のジオ加入者へと順次拡大される予定です。10億人以上のインターネット利用者を抱えるインドは、巨大テック企業にとって、多様なデータを収集し、AIモデルを改良するための最重要市場と見なされています。今回の提携は、その攻略を加速させる明確な一手と言えるでしょう。

インドのAI市場では、すでに競争が始まっています。3カ月前には、AI検索エンジンのPerplexityが、リライアンスの競合である通信大手バーティ・エアテルと組み、同様の無料提供を開始しました。また、OpenAIも11月4日から、インド国内の全ユーザーにエントリープラン「ChatGPT Go」を1年間無料で提供すると発表しています。

今回の提携は個人向けに留まりません。リライアンスはGoogle Cloudと連携し、インド国内でのTPU(テンソル・プロセッシング・ユニット)へのアクセスを拡大します。さらに、リライアンスのAI子会社はGoogle Cloudの戦略的パートナーとなり、法人向けAI「Gemini Enterprise」の国内展開を共同で推進する計画です。

Googleのスンダー・ピチャイCEOは「インドの消費者、企業、開発者コミュニティに最先端のAIツールを届ける」と声明で述べました。無料提供によるユーザー基盤の拡大は、生成AIの普及を後押しする一方、無料期間終了後の収益化が今後の焦点となりそうです。巨大市場インドを舞台にしたAI覇権争いは、新たな局面を迎えています。

Alphabet、AIで初の四半期売上1000億ドル達成

AIがもたらす記録的成長

初の四半期売上1000億ドル達成
Geminiアプリ利用者6.5億人
AIモデルのトークン処理量が20倍成長
有料サブスク登録者3億人を突破

検索とクラウド事業の躍進

AI Overviewによる検索クエリ数の増加
クラウドの受注残高は1550億ドル
クラウド顧客の7割がAI製品を利用
大手AIラボ10社中9社がGoogle Cloudを選択

Googleの親会社Alphabetは2025年10月29日、2025年第3四半期決算を発表しました。四半期売上高は過去最高の1000億ドルに達し、5年間で倍増という驚異的な成長です。この記録的な業績は、検索クラウド事業全体にわたるAIへの戦略的投資が本格的な収益化フェーズに入ったことを明確に示しています。

成長の核となるAIの勢いは、具体的な数値に表れています。対話型AI「Gemini」アプリの月間アクティブユーザーは6億5000万人を超え、クエリ数は前期比で3倍に急増。全プロダクトでのAI処理能力は、この1年で20倍以上に拡大しました。

主力事業である検索においてもAIが新たな成長を牽引しています。「AI Overview」は全体のクエリ数増加に貢献し、特に若年層の利用が顕著です。新たに40言語に対応した「AI Mode」も、7500万人のデイリーアクティブユーザーを獲得し、利用が急拡大しています。

Google Cloud事業はAI製品の強化で成長が加速しています。AI関連製品の収益は前年同期比200%超の増加。受注残高も1550億ドルに達しました。既存顧客の7割以上がAI製品を利用しており、大手企業との大型契約も過去2年間の合計を上回るペースで獲得しています。

YouTubeではAIツールでクリエイター動画制作や収益化を支援しています。Google OneやYouTube Premiumといった有料サブスクリプション登録者数も順調に増加し、3億人を突破。安定した収益基盤の構築が進んでいます。

同社の強みは、自社開発のTPUNVIDIAGPUの両方を提供するAIインフラです。この優位性により大手AI企業を含む多くの顧客を獲得。自動運転のWaymoも事業拡大を進めるなど、未来への投資も着実に成果を上げています。

サンダー・ピチャイCEOは「AIが具体的なビジネス成果を上げている」と述べ、AIにおけるリーダーシップに自信を示しました。今回の記録的な決算は、Alphabetが生成AI時代における確固たる地位を築きつつあることを市場に強く印象付けたと言えるでしょう。

Anthropic、Google製AI半導体を100万基に増強

数百億ドル規模のAI投資

最大100万基のTPU利用計画
数百億ドル規模の大型投資
2026年に1GW超の容量を確保
急増する法人顧客需要への対応

マルチプラットフォーム戦略

Google TPU価格性能比を追求
AmazonのTrainiumも併用
NVIDIAGPUも活用
主要提携Amazonとの連携も継続

AI企業のAnthropicは2025年10月23日、Google Cloudとの提携を大幅に拡大し、最大100万基のTPUを利用する計画を発表しました。投資規模は数百億ドルに上り、急増する顧客需要に対応するため、AIの研究開発能力を強化します。この拡大により、2026年には1ギガワットを超える計算能力が追加される見込みです。

同社の法人顧客は30万社を超え、年間ランレート収益が10万ドル以上の大口顧客数は過去1年で約7倍に増加しました。この計算能力の増強は、主力AI「Claude」への指数関数的な需要増に対応し、最先端のモデル開発を維持するために不可欠です。

Google Cloudのトーマス・クリアンCEOは、「AnthropicTPUの利用を大幅に拡大したのは、長年にわたりその優れた価格性能比と効率性を評価してきた結果だ」と述べました。Googleは、第7世代TPU「Ironwood」を含むAIアクセラレータの革新を続け、さらなる効率化と容量拡大を推進しています。

Anthropicは、特定の半導体に依存しない多様な計算基盤戦略を採っている点が特徴です。GoogleTPUに加え、AmazonのTrainium、NVIDIAGPUという3つのプラットフォームを効率的に活用することで、業界全体との強力なパートナーシップを維持しながらClaudeの能力を進化させています。

Googleとの提携拡大の一方で、AnthropicAmazonとのパートナーシップも継続する方針を明確にしています。Amazonは引き続き同社の主要なトレーニングパートナーであり、クラウドプロバイダーです。両社は巨大な計算クラスターを構築する「Project Rainier」でも協力を続けています。

Google Cloud、次世代AI企業の囲い込みで覇権狙う

Google Cloudが、次世代のAIスタートアップ企業の獲得に全力を注いでいます。NvidiaOpenAI提携など、巨大企業同士の連携が加速するAIインフラ市場で、Googleは将来のユニコーン企業を早期に囲い込む戦略を選択。クラウドクレジットの提供や技術支援を通じて、自社プラットフォームへの取り込みを急いでいます。これは、AI市場の主導権を巡る競争が新たな局面に入ったことを示しています。 AIインフラ市場では、NvidiaOpenAIの1000億ドル規模の提携や、MicrosoftAmazonOracleによる大型投資など、既存大手間の連携が加速しています。こうした巨大ディールは特定の企業連合が市場を支配する構図を生み出しており、Google Cloudは一見するとこの流れから取り残されているように見えます。 しかし、Google Cloudは異なる賭けに出ています。同社のフランシス・デソウザCOOによれば、世界の生成AIスタートアップの60%がGoogle Cloudを選択。同社は将来有望な企業が巨大化する前に「主要コンピューティングパートナー」として関係を築くことに注力し、今日の巨人を巡る争いよりも価値があると見ています。 GoogleはAIスタートアップに対し、最大35万ドルのクラウドクレジットや、同社の技術チームへのアクセス、マーケットプレイスを通じた市場投入支援などを提供しています。これにより、スタートアップは初期コストを抑えながら、Googleのエンタープライズ級のインフラとAIスタックを活用できるという大きな利点を得られるのです。 Google Cloud戦略の核となるのが「オープンな姿勢」です。自社のAIチップTPU」を他社のデータセンターに提供する異例の契約を結ぶなど、あらゆる階層で顧客に選択肢を提供。競合に技術を提供してもエコシステム全体の拡大を優先する、長年の戦略を踏襲しています。この戦略は、競合他社との差別化にどう影響するのでしょうか。 この戦略は、独占禁止法に関する規制当局の懸念を和らげる狙いもあると見られています。オープンなプラットフォームとして競争を促進する姿勢を示し、自社の検索事業における独占的な地位をAI分野で乱用するとの批判をかわす狙いです。同時に、未来の巨大企業との関係構築で長期的な優位性を確保します。

Nvidia追撃のGroqが7.5億ドル調達 AI推論特化LPUで69億ドル評価へ

資金調達と企業価値

新規調達額は7.5億ドルを達成
ポストマネー評価額69億ドルに到達
1年間で評価額2.8倍に急伸
累計調達額は30億ドル超と推定

技術的優位性

NvidiaGPUに挑む独自チップLPUを採用
AIモデル実行(推論)特化の高性能エンジン
迅速性、効率性、低コストを実現
開発者200万人超が利用、市場浸透が加速

AIチップベンチャーのGroqは先日、7億5000万ドルの新規資金調達を完了し、ポストマネー評価額69億ドル(約1兆円)に到達したと発表しました。これは当初予想されていた額を上回る結果です。同社は、AIチップ市場を支配するNvidiaGPUに対抗する存在として、推論特化の高性能なLPU(言語処理ユニット)を提供しており、投資家の高い関心を集めています。

Groqの核となるのは、従来のGPUとは異なる独自アーキテクチャのLPUです。これは、AIモデルを実際に実行する「推論(Inference)」に特化して最適化されており、推論エンジンと呼ばれます。この設計により、Groqは競合製品と比較して、AIパフォーマンスを維持または向上させつつ、大幅な低コストと高効率を実現しています。

Groqの技術は開発者や企業向けに急速に浸透しています。利用する開発者の数は、わずか1年で35万6000人から200万人以上へと急増しました。製品はクラウドサービスとして利用できるほか、オンプレミスのハードウェアクラスターとしても提供され、企業の多様なニーズに対応できる柔軟性も強みです。

今回の調達額は7.5億ドルですが、注目すべきはその評価額の伸びです。Groq評価額は、2024年8月の前回の資金調達時(28億ドル)からわずか約1年で2.8倍以上に膨らみました。累計調達額は30億ドルを超えると推定されており、AIインフラ市場における同社の将来性に、DisruptiveやBlackRockなどの大手が確信を示しています。

創業者のジョナサン・ロス氏は、GoogleTensor Processing Unit(TPU)の開発に携わっていた経歴を持ちます。TPUGoogle CloudのAIサービスを支える専門プロセッサであり、ロス氏のディープラーニング向けチップ設計における豊富な経験が、Groq独自のLPU開発の基盤となっています。