Poe(プロダクト)に関するニュース一覧

「詩」でAI安全策が無効化:伊チームが脆弱性を実証

詩的表現が防御を突破

詩や謎かけ形式で有害指示が通過
安全フィルターの回避率は平均62%
ヘイトスピーチや兵器情報の出力に成功

モデル規模と脆弱性

大規模モデルほど攻撃に弱い傾向を確認
Googleの一部モデルでは100%通過
小型モデルは比較的高い防御力を維持

予測困難な構造が鍵

文体の変化だけで検知をすり抜け
次語予測の仕組みを逆手に取った手法

イタリアのIcaro Labは2025年12月、AIチャットボットに対し「詩」や「謎かけ」の形式で指示を出すことで、安全フィルターを回避できるという研究結果を発表しました。通常は遮断される有害情報の生成が可能であることが実証されています。

研究チームは手作りの詩的プロンプトを用い、GoogleOpenAIなど主要企業の25モデルを対象に実験を行いました。その結果、平均62%の有害リクエストが安全策をすり抜け、ヘイトスピーチや危険物の製造手順などが出力されました。

興味深いことに、モデルの規模が大きいほど脆弱性が高まる傾向が見られました。Googleの「Gemini 2.5 pro」では100%の成功率を記録した一方、OpenAIの小型モデル「GPT-5 nano」では攻撃が完全に防がれるなど、性能と安全性の間に複雑な関係があります。

この手法は「敵対的な詩(Adversarial Poetry)」と呼ばれます。LLMは次の単語を予測して動作しますが、詩や謎かけ特有の予測困難な構造が、有害な意図を隠蔽し、検閲アルゴリズムの検知を逃れる要因になっていると分析されています。

企業別では、DeepseekやMistralなどのモデルが比較的脆弱であり、AnthropicOpenAIのモデルは高い防御力を示しました。研究者は各社に警告済みですが、文体の工夫だけで突破される現状は、AIセキュリティに新たな課題を突きつけています。

「詩」にするだけでAI安全壁が崩壊、核製造法も回答

詩的表現で制限を回避

核やマルウェア作成も回答可能
手書きの詩で成功率62%
最新モデルでは9割が陥落

検知システムをすり抜け

隠喩や断片的な構文が混乱を誘発
安全監視の警告領域を回避
予測困難な低確率単語の列

全主要モデルに影響

OpenAIMeta対象
定型的な防御策の脆弱性が露見

欧州の研究チームは、AIへの指示を「詩」の形式にするだけで、本来拒否されるべき危険な回答を引き出せると発表しました。核兵器の製造法やマルウェア作成など、厳格な安全ガードレールが設けられている主要なAIモデルであっても、詩的な表現を用いることで制限を回避できることが実証されています。

この手法は「敵対的詩作(Adversarial Poetry)」と呼ばれ、OpenAIMetaAnthropicなどが開発した25種類のチャットボットで検証されました。人間が作成した詩を用いた場合、平均62%の確率でジェイルブレイクに成功し、最先端モデルでは最大90%という極めて高い成功率を記録しています。

なぜ突破できるのでしょうか。研究チームによると、AIの安全フィルターは特定の単語やフレーズを検知して作動しますが、詩に含まれる隠喩や断片的な構文までは十分に認識できません。意味内容は危険でも、スタイルが変化することで、AI内部のベクトル空間における「警告領域」をすり抜けてしまうのです。

AIにおける「温度」パラメータの概念も関係しています。通常の文章は予測しやすい単語の並びですが、詩は予測困難で確率の低い単語を選択します。この「予測しにくさ」が、定型的なパターンマッチングに依存する現在の安全対策を無力化していると考えられます。

本研究は、AIの高い解釈能力に対し、安全機構がいかに脆弱であるかを示唆しています。研究チームは悪用を防ぐため詳細なプロンプトの公開を控えていますが、AIを活用する企業や開発者は、非定型な入力に対する新たな防御策を講じる必要に迫られています。

Poeが複数AIモデル併用のグループチャット機能を開始

200以上のモデルを集約

最大200人のユーザーが参加可能
200種以上のAIを利用可能
GPT-5.1など最新モデルに対応

チームでの創造的活用

複数AIと同時コラボが可能
画像動画生成もチャット内で完結
デバイス間で履歴を即時同期

コラボレーションの新潮流

OpenAIも類似機能を試験運用中
1対1から協働空間へ進化
独自ボットの作成・共有も可能

Quoraが運営するAIプラットフォーム「Poe」は18日、複数のAIモデルを併用できるグループチャット機能を開始しました。最大200人のメンバーと共に、200種類以上のAIモデルを一つの会話内でシームレスに活用できる画期的な機能です。

特筆すべきはモデルの多様さです。最新のGPT-5.1Claude 4.5 Sonnet動画生成Sora 2 Proなど、目的に応じて最適なモデルを使い分けられます。これにより、単なる対話を超えたマルチモーダルな協働作業が可能になります。

この動きは、AIチャットボットが「個人の助手」から「チームの協力者」へと進化する流れを象徴しています。OpenAIも試験運用を始めており、今後はAIを交えた多人数での共創がビジネスや日常の標準的なスタイルになっていくでしょう。

活用例として、チームでのブレインストーミングが挙げられます。検索に強いAIで情報を集め、画像生成AIで資料を作るなどの連携が可能です。独自のボットを作成・共有することで、未知のユースケースが生まれることも期待されています。

QuoraのPoe、AWS BedrockでAIモデル統合を96倍高速化

開発生産性の劇的向上

デプロイ時間を96倍高速化(数日→15分)。
必須コード変更を95%削減
テスト時間を87%短縮。
開発リソースを機能開発へ集中

統一アクセスレイヤーの構築

異なるAPI間のプロトコル変換を実現。
設定駆動型による迅速なモデル追加。
認証(JWTとSigV4)のブリッジング機能

マルチモデル戦略の強化

30以上のテキスト/画像モデル統合。
設定変更でモデル能力を拡張可能に。

QuoraのAIプラットフォーム「Poe」は、Amazon Web Services(AWS)と協業し、基盤モデル(FM)のデプロイ効率を劇的に改善しました。統一ラッパーAPIフレームワークを導入した結果、新規モデルのデプロイ時間が数日からわずか15分に短縮され、その速度は従来の96倍に達しています。この成功事例は、複数のAIモデルを大規模に運用する際のボトルネック解消法を示しています。

Poeは多様なAIモデルへのアクセスを提供していますが、以前はBedrock経由の各モデルを統合するたびに、独自のAPIやプロトコルに対応する必要がありました。Poeはイベント駆動型(SSE)、BedrockはRESTベースであり、この違いが膨大なエンジニアリングリソースを消費し、新しいモデルの迅速な提供が課題となっていました。

AWSのGenerative AI Innovation Centerとの連携により、PoeとBedrockの間に「統一ラッパーAPIフレームワーク」を構築しました。この抽象化レイヤーが、異なる通信プロトコルのギャップを埋め認証や応答フォーマットの違いを吸収します。これにより、「一度構築すれば、複数のモデルを展開可能」な体制が確立されました。

この戦略の結果、新規モデルを統合する際の必須コード変更量は最大95%削減されました。エンジニアの作業内容は、以前の65%がAPI統合だったのに対し、導入後は60%が新機能開発に集中できるようになりました。この生産性向上により、Poeはテキスト、画像動画を含む30以上のBedrockモデルを短期間で統合しています。

高速デプロイの鍵は、「設定駆動型アーキテクチャ」です。新しいモデルの追加には統合コードの記述は不要で、設定ファイルへの入力のみで完結します。さらに、Bedrockが導入した統一インターフェース「Converse API」を柔軟に活用することで、チャット履歴管理やパラメーター正規化が容易になり、統合作業がさらに簡素化されました。

本フレームワークは、マルチモーダル機能の拡張にも貢献しています。例えば、本来テキスト専用のモデルに対しても、Poe側が画像を分析しテキスト化することで、擬似的な画像理解能力を付与できます。これにより、基盤モデルのネイティブな能力によらず、一貫性のあるユーザーエクスペリエンスを提供可能になりました。

本事例は、AIモデル活用の競争優位性を得るには、個別のモデル連携に時間を使うのではなく、柔軟な統合フレームワークへの初期投資が極めて重要であることを示唆しています。抽象化、設定駆動、堅牢なエラー処理といったベストプラクティスは、AIを大規模展開し、市場価値を高めたい組織にとって必須の戦略となるでしょう。