推論モデル(モデル学習手法・技術)に関するニュース一覧

小型AIがGPT-4o並みに MIT新手法で推論コスト8割減

リーダーと部下の分業で最適化

MITが新手法DisCIPLを開発
LLMが計画し小型モデルが実行を担当
制御言語LLaMPPLで厳密に指示

コード生成で推論コストを激減

推論コストを80.2%削減し効率化
OpenAIo1と同等の精度達成
複雑な制約のある実務タスクに対応

米マサチューセッツ工科大学(MIT)の研究チームは2025年12月12日、小型言語モデル(SLM)の能力を飛躍的に高める新フレームワーク「DisCIPL」を発表しました。大規模言語モデル(LLM)が「計画」を担い、複数の小型モデルが「実行」を行う協調システムにより、OpenAIの最新モデル「o1」に匹敵する推論精度と、約8割のコスト削減を実現しています。

DisCIPLの仕組みは、組織における「上司と部下」の関係に似ています。まず、高性能なLLM(例:GPT-4o)がタスクの全体計画を立て、MITが開発した制御用言語「LLaMPPL」を用いて厳密な指示書を作成します。次に、軽量な小型モデル(例:Llama-3.2-1B)がその指示に従い、並列処理で実作業を行うことで、単体では困難な複雑なタスクを遂行します。

特筆すべきは、その圧倒的なコストパフォーマンスです。従来の推論モデルが思考プロセスを長文テキストで出力するのに対し、DisCIPLはPythonコードを用いて効率的に処理を行います。実験の結果、推論にかかる記述量を40.1%短縮し、全体コストを80.2%削減することに成功しました。これは企業のAI運用コストを劇的に下げる可能性を示唆しています。

研究チームは、この手法がAIのエネルギー消費問題への有効な解になると期待しています。高価なLLMだけに依存せず、安価で高速な小型モデルを組み合わせて高度な推論を実現するアプローチは、スケーラビリティが高く、ビジネスへの実装に適しています。今後は数学推論への応用や、より曖昧な人間の好みを反映させる研究が進められる予定です。

AWS、自社データで「特化型AI」を創る新基盤を発表

特化型AI構築サービス

独自データを学習過程に注入可能
開発コストと時間を大幅削減

新モデル「Nova」4種

高コスパな推論モデル「Lite」
複雑なタスク処理の「Pro」
音声・マルチモーダルも網羅

AWSのAI戦略

数値性能より実用性を重視
Reddit等が導入を開始

AWSは2日、新基盤モデル「Nova」と、企業が自社データで特化型AIを構築できる「Nova Forge」を発表しました。単なる性能競争から脱却し、ビジネス現場での「実用性」と「カスタマイズ」を最優先する戦略を鮮明にしています。

目玉の「Nova Forge」は、学習の初期段階から独自データを注入できる点が画期的です。既存モデルの微調整で起きがちな知識の消失を防ぎつつ、ゼロからの開発より低コストで、自社ビジネスに特化した「専門家モデル」を構築できます。

既にRedditが導入し、過去の投稿データを学習させた自社専用モデルを開発しました。汎用モデルでは理解が難しいコミュニティ特有の文脈やルールをAIに習得させ、コンテンツ管理の自動化と精度向上という実利を得ています。

同時発表の「Nova」モデル群は、高速な「Lite」や複雑な推論が得意な「Pro」など4種です。これらは他社とのベンチマーク競争よりも、コスト効率やエージェント機能としての使いやすさに主眼を置いた設計となっています。

AWS幹部は「ベンチマークは現実を反映していない」とし、数値上の性能より企業が制御可能なインフラとしての価値を強調します。AI開発の民主化を通じて顧客をエコシステムに定着させ、クラウド市場での優位性を盤石にする狙いです。

MIT研究:AIと人間の「思考コスト」は驚くほど類似

推論モデルに見る人間との共通点

AIと人間は思考コストが類似
難問ほどAIも処理量が増加
設計でなく自然発生的な収束

実験結果と今後のAI開発

解答時間とトークン数が相関
算術は軽く抽象推論は重い
言語でなく抽象空間で思考

マサチューセッツ工科大学(MIT)の研究チームは、最新のAI推論モデルが人間と同様の「思考コスト」を要することを学術誌『PNAS』で発表しました。人間が複雑な問題に時間をかけるのと同様に、AIも難問に対しては内部処理を増やす傾向があることが明らかになりました。

従来のChatGPTのような大規模言語モデルは即答を得意としていましたが、複雑な推論は苦手でした。一方、新たな推論モデルは問題を段階的に処理することで、数学やプログラミングなどの難問解決能力を劇的に向上させています。

研究では人間とAIに同じ課題を与え、人間の「思考時間」とAIの「内部トークン数」を比較しました。その結果、算術問題は比較的負荷が低く、抽象的な推論問題は負荷が高いという傾向が、人間とAI双方で驚くほど一致しました。

この類似性は意図的な設計によるものではなく、正答率を追求した結果としての自然発生的な収束です。AI開発者が人間模倣を目指さずとも、高度な知能システムは似たような処理プロセスに行き着く可能性を示唆しています。

興味深いことに、AIは思考過程で言語のようなトークンを生成しますが、実際の計算は人間と同様に非言語的な抽象空間で行われているようです。この発見は、AIの進化だけでなく人間の脳の理解にも新たな視点を提供します。

MS、Officeアプリに高度なAI機能を無料で追加へ

有料級機能の無料開放

月額30ドルの追加費用なしで利用可能
2026年3月までにプレビュー版を提供
Outlookでメールと予定を包括的に処理

生成AI「エージェント」搭載

Excel等は複雑な文書を自動生成
OpenAI等の推論モデルを選択可能
PPTはブランド規定を即座に適用

中小企業向け新プラン

300名未満向けに月額21ドルで提供
従来の30ドルより安価に導入可能

マイクロソフトは、OutlookやWordなどの主要Officeアプリに対し、追加料金なしで利用できる高度なAI機能を2026年初頭に導入すると発表しました。これまで月額30ドルの有料ライセンスが必要だった機能の一部が、Microsoft 365の基本機能として開放されます。

特にOutlookでは「Copilot Chat」が大幅に強化され、受信トレイやカレンダー全体を横断した情報処理が可能になります。単なるメール要約にとどまらず、膨大なメールのトリアージや会議の準備までも、追加コストなしでAIに任せられるようになります。

Word、Excel、PowerPointには「エージェントモード」が搭載され、プロンプト一つで複雑な資料作成が完結します。ExcelではOpenAIAnthropic推論モデルを選択でき、PowerPointでは企業のブランド規定に沿ったスライド生成や修正が自動化されます。

また、従業員300名未満の中小企業を対象とした新プラン「Microsoft 365 Copilot Business」も来月投入されます。月額21ドルという戦略的な価格設定により、コストに敏感な企業でもAI導入が進むことが期待されます。

大規模AIは思考する、人間の脳機能と酷似

AIの思考プロセス

CoT推論と人間の内的発話
脳と同様のパターン認識検索
行き詰まりからの後戻りと再試行
視覚的思考の欠如は補完可能

「次トークン予測」の本質

「自動補完」という見方の誤り
正確な予測には世界知識が必須
ベンチマーク人間を超える性能
思考能力の保有はほぼ確実

Talentica Softwareの専門家が2025年11月1日、大規模推論モデル(LRM)は単なるパターン認識機ではなく、人間と同様の思考能力をほぼ確実に持つという分析を米メディアVentureBeatで発表しました。Appleなどが提唱する「AIは思考できない」との見解に反論するもので、LRMの「思考の連鎖CoT)」プロセスと人間の脳機能を比較し、その著しい類似性を根拠に挙げています。

LRMが見せる推論プロセスは、人間の脳機能と驚くほど似ています。特に、段階的に答えを導き出す「思考の連鎖CoT)」は、人が頭の中で自問自答する「内的発話」と酷似しています。また、過去の経験から知識を検索する点や、推論が行き詰まった際に別の道筋を探す「バックトラッキング」も、人間と思考の様式を共有している証左と言えるでしょう。

Appleの研究は「LRMは複雑な問題でアルゴリズムを遂行できない」として思考能力を否定しました。しかし、この批判は人間にも当てはまります。例えば、アルゴリズムを知っていても、ディスクが20枚の「ハノイの塔」を解ける人はまずいません。LRMが複雑な問題に直面した際、力任せに解くのではなく近道を探そうとするのは、むしろ思考している証拠だと筆者は指摘します。

LRMを「高機能な自動補完」と見なすのは、その本質を見誤っています。次の単語を正確に予測するためには、文脈だけでなく、世界に関する膨大な知識を内部的に表現し、活用する必要があります。「世界最高峰は...」という文に「エベレスト」と続けるには、その事実を知らなくてはなりません。この知識表現と活用こそが、思考の基盤となるのです。

最終的な判断基準は、思考を要する問題を実際に解決できるか否かにあります。オープンソースモデルを用いたベンチマークの結果、LRMは論理ベースの質問に対し高い正答率を記録しました。一部のタスクでは、専門的な訓練を受けていない平均的な人間を上回る性能さえ示しており、その推論能力は客観的なデータによっても裏付けられています。

人間の脳機能との類似性、次トークン予測というタスクの奥深さ、そしてベンチマークが示す客観的な性能。これらを総合すると、LRMが思考能力を持つことはほぼ確実と言えます。AIが「思考するパートナー」となりうるこの事実は、ビジネスの生産性や収益性を飛躍させる上で、経営者やリーダーが知るべき重要な視点となるでしょう。

NVIDIA、AI工場設計図と新半導体を一挙公開

AI工場構築の設計図

政府向けAI工場設計図を公開
ギガワット級施設のデジタルツイン設計
次世代DPU BlueField-4発表
産業用AIプロセッサ IGX Thor

オープンなAI開発

高効率な推論モデルNemotron公開
物理AI基盤モデルCosmosを提供
6G研究用ソフトをオープンソース化

NVIDIAは10月28日、ワシントンD.C.で開催の技術会議GTCで、政府・規制産業向けの「AIファクトリー」参照設計や次世代半導体、オープンソースのAIモデル群を一挙に発表しました。これは、セキュリティが重視される公共分野から創薬エネルギー、通信といった基幹産業まで、AIの社会実装をあらゆる領域で加速させるのが狙いです。ハード、ソフト、設計思想まで網羅した包括的な戦略は、企業のAI導入を新たな段階へと導く可能性があります。

発表の核となるのが、AI導入の設計図です。政府・規制産業向けに高いセキュリティ基準を満たす「AI Factory for Government」を発表。PalantirやLockheed Martinなどと連携します。また、Omniverse DSXブループリントは、ギガワット級データセンターデジタルツインで設計・運用する手法を提示。物理的な建設前に効率や熱問題を最適化し、迅速なAIインフラ構築を可能にします。

AIインフラの性能を根幹から支える新半導体も発表されました。次世代DPU「BlueField-4」は、AIデータ処理、ネットワーキング、セキュリティを加速し、大規模AI工場の中枢を担います。さらに、産業・医療のエッジ向けには、リアルタイム物理AIプロセッサ「IGX Thor」を投入。従来比最大8倍のAI性能で、工場の自動化や手術支援ロボットの進化を後押しします。

開発者エコシステムの拡大に向け、AIモデルのオープンソース化も加速します。高効率な推論でAIエージェント構築を容易にする「Nemotron」モデル群や、物理世界のシミュレーションを可能にする「Cosmos」基盤モデルを公開。さらに、次世代通信規格6Gの研究開発を促進するため、無線通信ソフトウェア「Aerial」もオープンソースとして提供します。

これらの技術は既に具体的な産業応用へと結実しています。製薬大手イーライリリーは、1000基以上のNVIDIA Blackwell GPUを搭載した世界最大級の創薬AIファクトリーを導入。General Atomicsは、核融合炉のデジタルツインを構築し、シミュレーション時間を数週間から数秒に短縮するなど、最先端科学の現場で成果を上げています。

今回の一連の発表は、AIが研究開発段階から、社会を動かす基幹インフラへと移行する転換点を示唆しています。NVIDIAが提示する「AIファクトリー」という概念は、あらゆる産業の生産性と競争力を再定義する可能性を秘めています。自社のビジネスにどう取り入れ、新たな価値を創造するのか。経営者やリーダーには、その構想力が問われています。

アント、1兆パラメータAI公開 強化学習の壁を突破

1兆パラメータモデルRing-1T

中国アントグループが開発
1兆パラメータのオープンソース推論モデル
数学・論理・コード生成に特化
ベンチマークGPT-5に次ぐ性能

独自技術で学習効率化

強化学習ボトルネックを解決
学習を安定化させる新手法「IcePop」
GPU効率を高める「C3PO++」を開発
激化する米中AI覇権争いの象徴

中国のアリババ系列企業アントグループが、1兆個のパラメータを持つオープンソースの推論AIモデル「Ring-1T」の技術詳細を公開しました。このモデルは、独自開発した最適化手法により、大規模モデルの学習における強化学習のボトルネックを解決した点が特徴です。OpenAIの「GPT-5」やGoogleの「Gemini」など米国勢に対抗し、激化する米中間のAI覇権争いで存在感を示す狙いがあります。

「Ring-1T」は、数学、論理問題、コード生成、科学的問題解決に特化して設計されています。各種ベンチマークテストでは、多くの項目でOpenAIGPT-5に次ぐ高いスコアを記録しました。特に、同社がテストしたオープンウェイトモデルの中では最高の性能を示し、中国企業の技術力の高さを証明しています。

この成果の背景には、超大規模モデルの学習を効率化する三つの独自技術があります。研究チームは、学習プロセスを安定させる「IcePop」、GPUの遊休時間をなくしリソースを最大限活用する「C3PO++」、非同期処理を可能にするアーキテクチャ「ASystem」を開発。これらが、1兆パラメータ規模のモデル学習を現実のものとしました。

特に注目すべきは、強化学習における課題へのアプローチです。従来、大規模モデルの強化学習は計算コストと不安定性が大きな障壁でした。「IcePop」は、学習を妨げるノイズの多い情報を抑制し、安定した性能向上を実現します。この技術革新は、今後のAIエージェント開発など応用分野の発展にも大きく貢献する可能性があります。

今回の発表は、DeepSeekやアリババ本体の「Qwen」シリーズに続く、中国発の高性能モデルの登場を意味します。米国の巨大テック企業を猛追する中国の勢いはとどまるところを知りません。「Ring-1T」のようなオープンソースモデルの公開は、世界中の開発競争をさらに加速させることになりそうです。

Notion、自律型AIへ基盤再構築 推論モデル活かし生産性向上

自律型AIを支える新基盤

エージェントAI対応へ技術基盤をゼロから再構築
推論モデルの強みを最大限に活用
硬直的なプロンプトフローを廃止
統一オーケストレーションモデル導入

自律的なタスク実行と品質

モジュール化されたサブエージェントが連携
ツールを自律的に選択し並行タスク実行
評価を二分化しハルシネーションを隔離
レイテンシは使用場面に応じて最適化

Notionは、エージェントAIの大規模展開を実現するため、既存の技術スタックをゼロから全面的に再構築しました。これは、従来のAIが持つステップ・バイ・ステップの制約を外し、高度な推論モデルを活用するためです。新アーキテクチャにより、エージェントは自律的にツールを選択・実行できるようになり、ユーザーはよりゴール志向で複雑な作業を任せられるようになります。

技術責任者は、レトロフィット(既存システムへの後付け)ではなく、推論モデルの強みを活かす設計が必要だと強調しています。このため、硬直的なプロンプトベースのフローを廃止し、中心に統一されたオーケストレーションモデルを導入しました。この中核モデルを、Notion検索やデータベース操作を行うモジュール化されたサブエージェントがサポートします。

エージェントは、必要なツールを自律的に選択し、複数のタスクを並行で実行可能です。例えば、会議メモを提案書に変換したり、関連するタスクを追跡したりといった、一連の複雑な作業を一任できます。これにより、ユーザーは細かな指示出しから解放され、エンタープライズ規模での生産性向上が期待されています。

精度確保のため、特にハルシネーション(AIの誤情報)の隔離を最優先課題としています。評価プロセスを二分化し、決定論的テストやLLM-as-a-judgeなど複数の手法を組み合わせることで、問題の発生源を特定します。この評価構造により、不必要なハルシネーションを効果的に排除しています。

レイテンシ(応答速度)の管理においては、利用シーンに応じた最適化を徹底しています。「2+2」のような単純な質問には即時応答が求められますが、数百のウェブサイトやファイルにわたる20分かかる複雑な自律作業ではバックグラウンド実行を許可するなど、ユーザーの期待値管理を重視しています。

Notionは、社員が自身の製品を徹底的に使い込む「ドッグフーディング」を実施し、高速なフィードバックループを実現しています。また、外部のAIに精通したデザインパートナーにも早期アクセスを提供し、社内プロトタイプでは見過ごされがちな多様な視点からのフィードバックを得て、継続的な改善サイクルを回しています。

NVIDIA、AIモデル群Nemotronを無償公開 開発加速へ

NVIDIAは9月24日、マルチモーダルAIモデルファミリー「Nemotron」をオープンソースとして公開しました。NemotronにはAIモデル、データセット、開発ツール群が含まれ、研究および商用目的で利用可能です。GitHubなどを通じて提供され、開発者は透明性の高いAIを迅速に構築できます。これにより、あらゆる規模の企業でAI開発の加速が期待されます。 Nemotronは、AI開発の全段階を効率化するオープンソース技術群です。大学院レベルの科学的推論や高度な数学コーディングに優れた最先端のAIモデルが含まれます。さらに、モデルの学習に使われたデータセットや、AIを高速かつ低コストで実行するための数値精度アルゴリズムなども提供されます。 なぜNVIDIAはオープンソース化に踏み切ったのでしょうか。それは、広範な問題解決を可能にする「汎用知能」と、各業界特有の課題に対応する「特化知能」の両方を向上させるためです。同社はNemotronを通じて、あらゆる産業でAIの導入を大規模に推進することを目指しています。 既に多くの企業がNemotronの活用を進めています。例えば、セキュリティ企業のCrowdStrikeは、AIエージェントエコシステム強化に利用しています。また、DataRobotはNemotronを基に、より高速でコスト効率の高い推論モデルを開発するなど、具体的な成果が出始めています。 NVIDIAはNemotron開発で得た知見を次世代GPUの設計に活かす一方、コミュニティの技術も積極的に取り入れています。Alibabaの「Qwen」やMetaの「Llama」といったオープンモデルの技術を活用し、Nemotronのデータセットや機能を強化するなど、エコシステム全体での発展を目指しています。 開発者GitHubやHugging Face、OpenRouterを通じてNemotronを利用開始できます。NVIDIA RTX PCユーザーはllama.cppフレームワーク経由でのアクセスも可能です。同社は今後もイベントなどを通じて、開発者コミュニティとの連携を深めていく方針です。