LLMの情報漏洩対策、準同型暗号でデータを秘匿したまま処理

データ・プライバシーセキュリティインフラ
詳細を読む

プライバシー技術専門企業のDuality社は、大規模言語モデル(LLM)への問い合わせを秘匿したまま処理するフレームワークを開発しました。データを暗号化したまま計算できる完全準同型暗号(FHE)という技術を活用し、ユーザーの質問とLLMの回答をすべて暗号化します。これにより、企業の機密情報や個人情報を含むやり取りでも、情報漏洩のリスクを懸念することなくLLMの恩恵を受けられるようになります。

このフレームワークの核心は、FHEによるエンドツーエンドの機密性保護です。ユーザーが入力したプロンプトはまずFHEで暗号化され、LLMに送信されます。LLMはデータを復号することなく暗号化された状態で処理を行い、生成した回答も暗号化したままユーザーに返します。最終的な結果は、ユーザーの手元でのみ復号されるため、途中でデータが盗み見られる心配がありません。

Duality社が開発したプロトタイプは、現在GoogleのBERTモデルなど、比較的小規模なモデルに対応しています。FHEとLLMの互換性を確保するため、一部の複雑な数学関数を近似値に置き換えるなどの調整が施されています。しかし、この変更によってもモデルの再トレーニングは不要で、通常のLLMと同様に機能する点が特長です。

FHEは量子コンピュータにも耐えうる高い安全性を誇る一方、大きな課題も抱えています。それは計算速度の遅さです。暗号化によってデータサイズが膨張し、大量のメモリを消費します。また、暗号文のノイズを定期的に除去する「ブートストラッピング」という処理も計算負荷が高く、実用化のボトルネックとなってきました。

Duality社はこれらの課題に対し、アルゴリズムの改良で挑んでいます。特に機械学習に適した「CKKS」というFHE方式を改善し、効率的な計算を実現しました。同社はこの技術をオープンソースライブラリ「OpenFHE」で公開しており、コミュニティと連携して技術の発展を加速させています。

アルゴリズムの改良に加え、ハードウェアによる高速化も重要な鍵となります。GPUやASIC(特定用途向け集積回路)といった専用ハードウェアを活用することで、FHEの処理速度を100倍から1000倍に向上させることが可能だとされています。Duality社もこの点を重視し、OpenFHEにハードウェアを切り替えられる設計を取り入れています。

FHEで保護されたLLMは、様々な分野で革新をもたらす可能性があります。例えば、医療分野では個人情報を秘匿したまま臨床結果を分析したり、金融機関では口座情報を明かすことなく不正検知を行ったりできます。機密データをクラウドで安全に扱う道も開かれ、AI活用の可能性が大きく広がるでしょう。