MCP(LLM技術)に関するニュース一覧

Hud、AIコード監視の新技術。障害調査を数分に短縮

AI時代の監視の壁

従来APMは関数単位のデータ不足
コスト高で詳細ログを全量保存不可
AI修正に必要な実行文脈が欠如
手作業での原因特定に数時間を浪費

Hudによる解決と成果

1行のSDKで全関数動作を追跡
異常時に詳細データを自動収集
AIエディタから本番状況を即時照会
調査時間を3時間から10分未満に短縮

スタートアップのHudは、AI生成コードの本番環境での挙動を詳細に可視化するランタイムセンサーを発表しました。従来の監視ツールでは困難だった関数レベルのデータを取得し、AIエージェントによる自動修正を強力に支援します。

企業の開発現場ではAIによるコード生成が急増していますが、本番環境でのエラー原因特定が新たなボトルネックです。従来のAPMツールはコストや粒度の問題で、AIが必要とする深いコンテキストを提供できず、エンジニアは手作業での調査に追われていました。

HudのセンサーはSDKとしてわずか1行で導入でき、全ての関数の実行を追跡します。異常発生時にはHTTPパラメータやDBクエリなどの詳細なフォレンジックデータを自動収集し、AIエージェントが理解できる構造化データとして提供します。

特筆すべきは、Model Context Protocol (MCP) サーバー機能です。これにより、エンジニアはCursorなどのAIエディタ内から直接、本番環境の不具合原因をAIに問い合わせることが可能になり、修正までのプロセスが劇的に効率化されます。

導入企業のDrataやMonday.comでは、従来数時間かかっていた障害調査が10分未満に短縮されました。AIが生成したコードの中身を完全に把握できなくても、ランタイムデータが安全網となり、運用時の信頼性と生産性が飛躍的に向上しています。

Googleが管理型MCP提供開始 AIと実データの連携を簡易化

AI開発の工数を大幅削減

マネージドMCPサーバーをプレビュー公開
MapsやBigQuery等と即座に連携可能
独自コネクタ開発が不要、URL設定のみ

既存資産の活用と統制

Apigee連携で既存APIを変換可能
企業水準のセキュリティと統制を適用
Anthropic発の標準規格MCPを採用

Googleは10日、AIエージェントGoogle MapsやBigQueryなどの自社サービスに容易に接続できる「フルマネージドMCPサーバー」を発表しました。従来開発者が手動で構築していたコネクタ部分をGoogleが管理・提供することで、AIと実データの連携を簡素化し、開発工数の削減とガバナンスの強化を実現します。

これまでAIエージェントを外部ツールと連携させるには、複雑なコネクタの開発と維持が必要でした。今回の発表により、開発者URLを指定するだけで、安全かつ信頼性の高い接続が可能になります。Google Cloud幹部は「Google全体をエージェント対応(Agent-ready)にする設計だ」と述べています。

初期対応サービスには、Google Maps、BigQuery、Compute Engine、Kubernetes Engineが含まれます。これにより、AIは最新の地理情報に基づいた旅行計画や、大規模データへの直接クエリ、インフラ操作などが可能になります。現在はパブリックプレビューとして、既存顧客に追加コストなしで提供されています。

採用されたMCP(Model Context Protocol)はAnthropicが開発したオープンソース標準であり、ClaudeChatGPTなどの他社クライアントとも連携可能です。また、GoogleのAPI管理基盤「Apigee」を使えば、企業は既存のAPIをMCPサーバーに変換し、セキュリティ設定を維持したままAIに開放できます。

企業利用を前提に、権限管理の「IAM」や、プロンプトインジェクション等の脅威を防ぐ「Model Armor」といった高度なセキュリティ機能も統合されています。Googleが「配管工事」を担うことで、エンジニアエージェントの本質的な価値創造に集中できるようになります。

AI接続の標準「MCP」、Linux財団へ移管

業界標準化への転換点

AnthropicMCPをLinux財団へ寄贈
米大手と新財団を設立し標準化を推進
AIが外部ツールと連携する標準プロトコル

AIの「USB-C」を目指す

OpenAIGoogle、MSも支持を表明
開発工数を削減しセキュリティを向上
ユーザーは設定不要で高度な連携が可能

Anthropicは今週、AIエージェント接続プロトコル「MCP」をLinux Foundationへ寄贈しました。同時にOpenAIGoogleMicrosoftなどと共同で「Agentic AI Foundation」を設立し、AIの相互運用性を高めるための業界標準化を加速させます。

MCP(Model Context Protocol)は、AIモデルが外部のデータやツールにアクセスするための共通規格です。ハードウェアにおけるUSB-Cのように、異なるシステム間を簡単かつ安全に接続する役割を果たし、AIエージェントの実用性を飛躍的に高める鍵となります。

これまでAnthropic主導だったMCPですが、中立的な団体への移管により普及が決定付けられました。競合であるOpenAIGoogleも早期から支持を表明しており、AI業界全体が「エージェント機能の標準化」に向けて、競争から協力へと足並みを揃えた形です。

開発者にとっては、個別のAPIごとに接続機能を開発する手間が省け、一度の対応で多くのAIモデルに対応可能になります。また、オープンソース化によりセキュリティの透明性が確保され、企業が安心して業務システムにAIエージェントを導入できる環境が整います。

ユーザーにとっては、SlackClaudeなどのツールがシームレスに連携することを意味します。AIが人間に代わって複雑なタスクを実行する際、裏側でMCP認証やデータ通信を担うことで、ユーザーは技術的な障壁を感じることなく高度なAI体験を享受できるようになります。

米AI3社がエージェント標準化団体を共同設立

脱「囲い込み」へ業界が協調

OpenAIらがLinux Foundationで連携
AIエージェント相互運用性と信頼性を確保
特定のベンダーに依存しない中立的な開発環境

標準化を担う3つの寄贈技術

データ接続の標準規格MCPAnthropicが寄贈
Blockはエージェント構築枠組みGooseを提供
OpenAIはAIへの指示書AGENTS.mdを公開
Googleマイクロソフトも参加し業界標準目指す

OpenAIAnthropic、Blockの3社は、Linux Foundation傘下に「Agentic AI Foundation(AAIF)」を共同設立しました。AIエージェント開発における技術の断片化を防ぎ、相互運用可能な標準インフラを構築することが狙いです。

生成AIの活用は対話型から、タスクを自律実行する「エージェント型」へ移行しつつあります。しかし、各社が独自の規格でツールを開発すれば、互換性がなくなりベンダーロックインが生じる懸念がありました。

核となるのはAnthropicが寄贈した「Model Context Protocol(MCP)」です。これはAIとデータソースを繋ぐ「USB-C」のような標準規格であり、開発者は個別接続の手間から解放されます。

さらにBlockはエージェント構築フレームワーク「Goose」を、OpenAIはAIへの指示記述形式「AGENTS.md」を提供しました。これらはエージェント開発と制御の共通言語として機能します。

設立にはGoogleマイクロソフトAWSなども参加を表明しています。コンテナ技術におけるKubernetesのように、AAIFはAIエージェント時代の不可欠な公共インフラとなることを目指します。

GitHub、「Copilot Spaces」公開。文脈理解で開発効率化

プロジェクト固有の文脈をAIに付与

関連ファイルやIssueを集約してAIに提供
リポジトリ全体や特定のドキュメントを参照可能
独自の指示(Instructions)で挙動を制御

デバッグからPR作成まで自動化

AIが修正計画を立案しプルリクエストを自動生成
提案の根拠となるソースファイルを明示
IDEから直接Spaceを呼び出し可能

チームの知識共有とオンボーディング

作成したSpaceをチームメンバーと共有可能
新人のオンボーディング時間を短縮

GitHubは2025年12月4日、AI開発支援ツールの新機能「Copilot Spaces」を発表しました。これはAIにプロジェクト固有のファイルやドキュメントといった「文脈」を与え、より正確なデバッグやコード生成を可能にする機能です。従来のAIが抱えていた「背景知識不足」という課題を解決し、開発者生産性を飛躍的に高めます。

Spacesの最大の特徴は、AIに関連情報を「キュレーション」して渡せる点です。開発者はIssueや過去のプルリクエスト、ガイドラインなどをSpaceに追加するだけで、Copilotはその情報を前提とした回答を行います。これにより、AIは推測ではなく実際のコードベースに基づいた高精度な提案が可能になります。

利用手順も効率化されています。Space内でCopilotデバッグを依頼すると、AIはまず修正のための実行計画を提示します。その計画を承認すれば、AIエージェントが自動的にコードを書き換え、プルリクエストまで生成します。修正の根拠となるファイルも明示されるため、信頼性も担保されます。

また、チーム開発における知識共有の基盤としても機能します。作成したSpaceはチームメンバーや組織全体で共有できるため、特定の機能に関する「生きたナレッジベース」となります。これにより、新しく参画したエンジニアがプロジェクトの背景を理解するためのオンボーディング時間を大幅に短縮できます。

さらに、GitHub MCP Serverを通じて、使い慣れたIDEから直接Spaceを利用することも可能です。ブラウザとエディタを行き来する手間を省き、開発フローを中断させません。今後は画像やPDFなどのドキュメント読み込みもサポートされ、さらに活用の幅が広がることが期待されます。

WordPressのAIツールTelex、実務投入で開発コスト激減

瞬時の機能実装を実現

実験的AIツール「Telex」の実例公開
数千ドルの開発が数秒・数セントに
価格比較や地図連携などを自動生成

AIエージェントと連携

WordPress機能をAI向けに定義
MCPアダプターで外部AIと接続
Claude等がサイト構築に参加可能

Automattic社は12月3日、サンフランシスコで開催された年次イベントで、AI開発ツール「Telex」の実利用例を初公開しました。マット・マレンウェッグCEOは、従来多額の費用と時間を要したWeb機能の実装が、AIにより一瞬で完了する様子を実演し、Web制作現場における生産性革命をアピールしました。

「Telex」はWordPress専用のAIコーディングツールであり、自然言語による指示からサイト構成要素を即座に生成します。デモでは、複雑な価格比較表やGoogleカレンダーとの連携機能が数秒で構築されました。エンジニアへの発注が必要だった作業をブラウザ上で完結させ、劇的なコスト削減を実現します。

また、AIエージェントWordPressを直接操作可能にする「MCPアダプター」も発表されました。これはClaudeCopilotなどの外部AIに対し、WordPressの機能を標準化して提供する仕組みです。これにより、AIを用いたサイト管理やコードの修正が、プラットフォームを問わずシームレスに実行可能となります。

同社は2026年に向けて、AIモデルがWordPress上のタスクをどれだけ正確に遂行できるかを測るベンチマーク導入も計画しています。プラグインの変更やテキスト編集など、AIによる運用の自律化を見据えた環境整備が進んでおり、Webビジネスにおける生産性の定義が大きく変わろうとしています。

LangSmith、対話で作れる自律AI構築機能を一般公開

チャットで自律エージェント開発

会話のみでノーコード開発
動的な判断でタスクを自律完遂
詳細プロンプト自動生成

社内ツール連携とチーム共有

MCP社内システムと接続
APIで既存ワークフロー統合
チーム内での共有と再利用

LangChainは2025年12月2日、コーディング不要で実用的なAIエージェントを作成できる「LangSmith Agent Builder」をパブリックベータ版として公開しました。従来の固定的な手順書型とは異なり、チャットで指示するだけで、自律的に判断・実行する高度なエージェントを誰でも短時間で構築・展開できる点が画期的です。

最大の特徴は、エンジニアでなくとも対話形式で開発が完結する点です。ユーザーの曖昧なアイデアから、システムが自動で詳細なプロンプトを作成し、必要なツールを選定します。これにより、現場の担当者が自ら業務特化型AIを作ることが可能です。

従来の手順型自動化とは異なり、このエージェントは状況に応じて動的に計画を修正しながらタスクを遂行します。複雑な調査や分析など、事前に手順を定義しきれない業務でも、エージェントが試行錯誤を繰り返して目的を達成するため、生産性が向上します。

企業利用を見据え、拡張性も強化されました。MCPサーバーを介して社内データやAPIと安全に接続できるほか、作成したエージェントをAPI経由で呼び出すことも可能です。また、タスクに応じてOpenAIAnthropicなどのモデルを選択できます。

先行ユーザーにより、営業リサーチやチケット管理など多岐にわたる事例が生まれています。チーム内でテンプレートを共有し、個々のニーズに合わせて微調整することで、開発リソースを使わずに組織全体の業務効率化を加速させることができます。

AWSとVisa、AI代理購入のインフラ構築で提携

開発障壁を下げるインフラ提供

Visaの決済基盤AWSで提供
AIによる代理購入の実装を加速
開発用設計図をリポジトリで公開
旅行や小売りなど実用例を提示

安全な連携を実現する技術

MCP互換で複数エージェントが連携
カード情報のトークン化で安全確保
複雑な決済インフラの標準化を推進

AWSとVisaは2025年12月1日、急速に拡大する「エージェンティック・コマース(AI代理購入)」の分野で戦略的提携を発表しました。この提携により、企業はAIエージェントに安全な決済機能を迅速に組み込めるようになり、複雑な商取引の自動化が加速します。

具体的には、AWS Marketplaceに「Visa Intelligence Commerce platform」が掲載され、開発者は容易にアクセス可能となります。さらに両社は、旅行予約やB2B決済などの開発用ブループリント(設計図)を「Amazon Bedrock AgentCore」リポジトリにて公開する予定です。

特筆すべきは、これらのツールがMCP(Model Context Protocol)と互換性を持つ点です。これにより、異なる機能を持つ複数のエージェントがスムーズに連携し、複雑なタスクを完遂できるようになります。また、カード情報のトークン化により、高度なセキュリティも担保されます。

これまでAIによる商取引は決済プロトコルの乱立により、「断片化した西部開拓時代」の状態にありました。今回の提携は、信頼性の高い標準インフラを提供することで、開発障壁を劇的に下げ、AIが自律的に経済活動を行う未来を大きく引き寄せるものです。

PolyがAI検索ストレージへ転換、無料100GB提供

3D生成からファイル管理へ

3D生成AI市場の激化を受けピボット
ユーザーの「ファイル整理」課題を解決
累計800万ドルのシード資金を調達

高度なAI検索と大容量無料枠

自然言語でファイル検索・要約が可能
無料枠で100GBの大容量を提供
月額10ドルで2TB、Google等に対抗

外部連携とナレッジ活用

ChatGPT等と連携するMCP提供
NotebookLM以上のファイル管理目指す

Y Combinator支援のスタートアップPolyが、AI検索機能を中核に据えたクラウドストレージサービスとして再ローンチしました。かつて3D生成AIを手掛けていた同社は事業を転換し、無料プランで100GBという破格の容量を提供してGoogle DriveやDropboxなどの既存巨人に挑みます。

共同創業者のAgarwal氏は、前身である3Dアセット生成事業からのピボットを決断しました。生成AI市場の競争激化を予測しユーザーへのヒアリングを実施した結果、多くの人々が「ファイルシステムの整理」に課題を抱えていることを発見。AIでファイルを整理し、必要な情報を即座に見つけ出せるツールの開発に至りました。

Polyは単なる保存場所ではなく、AIが中身を理解するインテリジェントなファイルシステムです。テキスト、PDF、音声動画、Webリンクなど多様な形式に対応し、データに対して自然言語での検索や要約、翻訳が可能です。YouTubeリンクから内容を要約するなど、情報処理効率を大幅に高めます。

主なターゲットは、大量の資料を扱うクリエイターやナレッジワーカーです。GoogleNotebookLMと比較されますが、Polyはより包括的なファイル管理に焦点を当てています。さらにModel Context Protocol (MCP)サーバーを提供しており、Cursor等の外部ツールからPoly内のデータ活用も可能です。

Stack OverflowがAIデータ供給へ転換、社内知見を構造化

企業AI向けの新戦略

人間の知見をAI可読形式へ変換
企業向け「Stack Internal」を強化
Model Context Protocolに対応

データの信頼性を担保

回答者情報等のメタデータを付与
AI用の信頼性スコアを算出
ナレッジグラフで概念間の連携を強化

自律的成長への期待

AIによる自律的な質問作成も視野
開発者のナレッジ蓄積負荷を軽減

米Stack Overflowは、マイクロソフトのイベント「Ignite」において、企業向けAIスタックの一翼を担う新製品群を発表しました。同社は、開発者向けQ&A;フォーラムとしての従来の役割を超え、人間の専門知識をAIエージェントが理解可能な形式に変換するデータプロバイダーへと転換を図ります。これにより、企業内の暗黙知をAI活用可能な資産へと昇華させることが狙いです。

今回の中核となるのは、企業向け製品「Stack Internal」の強化です。従来の社内Q&A;機能に加え、高度なセキュリティと管理機能を搭載。さらに、Model Context Protocol (MCP)を採用することで、AIエージェントが社内データを取り込みやすい環境を整備しました。すでに多くの企業がトレーニング用にAPIを利用しており、AIラボとのデータライセンス契約も収益の柱となりつつあります。

特筆すべきは、データの信頼性を担保する仕組みです。Q&A;データに対し、回答者や作成日時、コンテンツタグといった詳細なメタデータを付与します。これに基づき「信頼性スコア」を算出することで、AIエージェントは情報の正確度を判断できるようになります。CTOのジョディ・ベイリー氏は、将来的にナレッジグラフを活用し、AIが自律的に概念を結びつける構想も示唆しました。

さらに将来的には、AIエージェントが知識の空白を検知し、自ら質問を作成する機能も検討されています。これにより、開発者が文書化に費やす労力を最小限に抑えつつ、組織独自のノウハウを効率的に蓄積することが可能になります。単なる検索ツールではなく、AIと人間が協調してナレッジを育てるプラットフォームへの進化が期待されます。

Windowsが「エージェントOS」へ進化、自律AIが業務代行

OS中枢への自律AI統合

タスクバーからAIエージェントを起動
バックグラウンドで複雑な業務を自律実行
ファイル管理や設定変更もAIが代行

オープン規格とセキュリティ

MCP規格採用で多様なツールと連携
隔離環境で動作しシステムを保護
企業向けに詳細な監査ログを提供

マイクロソフトは11月18日、Windows 11を「Agentic OS(エージェントOS)」へと進化させる構想を発表しました。自律型AIエージェントをタスクバーやシステム中枢に深く統合し、ユーザーに代わって複雑な業務を遂行させる狙いです。

最大の特徴は、AIが単なるチャットボットを超え、PC操作の主体となる点です。ユーザーがタスクバーからエージェントに指示を出せば、AIはバックグラウンドで調査やファイル整理、事務作業を自律的に実行します。

この変革を支えるのが、Anthropic社が提唱するオープン規格「MCP (Model Context Protocol)」の採用です。特定のモデルに依存せず、多様なツールと安全に接続できる環境を整備し、Apple等の独自路線と差別化を図っています。

企業導入を見据え、セキュリティ設計も刷新されました。「Agent Workspace」と呼ばれる隔離された実行環境を用意し、エージェントにはユーザーとは別のIDを付与。権限を最小限に留め、AIの誤作動やデータ流出のリスクを抑制します。

さらに、ファイルエクスプローラーへのCopilot統合や、画面上の表データを即座にExcel化する機能も追加されます。これらはすべてIT管理者が制御可能であり、生産性とガバナンスを両立させたい企業にとって強力な武器となるでしょう。

AIセキュリティ新星Runlayer、1100万ドル調達で始動

高まるMCPの需要とリスク

AIエージェントの標準プロトコルMCP
主要モデルメーカーがこぞって採用
プロトコル自体に潜むセキュリティ脆弱性
GitHub等で既にデータ漏洩の事例

Runlayerの包括的解決策

ゲートウェイから脅威検知まで一気通貫
既存ID基盤と連携し権限を管理
MCP開発者もアドバイザーとして参画
既にユニコーン8社が顧客に

AIエージェントセキュリティを手掛ける新興企業Runlayerが、11月17日に1,100万ドル(約16.5億円)のシード資金調達とともに正式ローンチしました。同社は、AIが自律的に動作するための標準プロトコル「MCP」に潜むセキュリティ脆弱性を解決します。ステルス期間中にユニコーン企業8社を含む数十社を顧客に獲得しており、市場の注目を集めています。

AIエージェントが企業のデータやシステムに接続し、自律的にタスクを実行するためには、その「接続方法」の標準化が不可欠です。その役割を担うのが、Anthropic社が開発したMCP(Model Context Protocol)です。OpenAIGoogleなど主要なAIモデル開発企業が軒並み採用し、今や業界のデファクトスタンダードとなっています。

しかし、このMCPの普及には大きな課題が伴います。プロトコル自体に十分なセキュリティ機能が組み込まれていないのです。実際に過去には、GitHubのプライベートリポジトリのデータが不正にアクセスされる脆弱性や、Asanaで顧客データが漏洩しかねない不具合が発見されており、企業がAIエージェントを安全に活用する上での大きな障壁`となっています。

この市場機会を捉え、多くの企業がMCPセキュリティ製品を開発しています。その中でRunlayerは、単なるアクセス制御ゲートウェイに留まらない『オールインワン』セキュリティツールとして差別化を図ります。脅威検知、エージェントの活動を監視する可観測性、さらには企業独自のAI自動化を構築する機能までを包括的に提供する計画です。

創業者Andrew Berman氏は、前職のZapier社でAIディレクターとして初期のMCPサーバー構築に携わった経験を持ちます。その経験からプロトコルの「死角」を痛感したことが創業のきっかけとなりました。MCPの仕様を作成したDavid Soria Parra氏をアドバイザーに迎えるなど、技術的な信頼性も高く評価されています。

Runlayerはステルスで活動していたわずか4ヶ月の間に、GustoやInstacartといったユニコーン企業8社を顧客として獲得するなど、既に力強いスタートを切っています。AIエージェントの本格的な普及期を前に、その安全性を担保する基盤技術として、同社の今後の動向から目が離せません。

Googleマップ、AIツールで対話型開発を革新

対話型AIによるプロト開発

テキスト指示で地図プロトタイプを自動生成
ブランドに合わせた地図デザインのカスタマイズ
生成コードはFirebase Studioで編集可能

AIモデル連携と開発支援

独自AIを地図データに接続するGrounding Lite
質問に視覚で答えるContextual View機能
API利用を助けるコードアシスタントを提供
全機能の基盤にAIモデルGeminiを活用

Googleは2025年11月10日、地図サービス「Google Maps」向けに、AIモデル「Gemini」を活用した複数の新しい開発者向けツールを発表しました。テキスト指示でインタラクティブな地図のプロトタイプを自動生成する「Builder Agent」などを提供し、開発者が地図データを活用したプロジェクトを迅速かつ容易に構築できるよう支援します。

中核となる「Builder Agent」は、自然言語で指示するだけで地図ベースのプロトタイプを生成する画期的なツールです。「特定の都市のストリートビューツアーを作成」といった簡単なテキスト入力から、必要なコードが自動で書き出されます。生成されたコードは、プレビュー確認やFirebase Studioでの直接編集が可能です。

開発者が持つ独自のAIモデルとの連携も強化されました。「Grounding Lite」機能を使えば、自社のAIアシスタントGoogle Mapsの地理空間データに接続できます。「Contextual View」は、ユーザーの質問に対し、地図や3D表示で直感的な回答を提示するローコード部品です。

開発効率をさらに高めるため、「MCP Server」と呼ばれるコードアシスタントも提供されます。これはGoogle Mapsの技術ドキュメントにAIが接続するもので、APIの使用方法などについて対話形式で質問し、迅速に回答を得られます。ドキュメント検索の手間が大幅に削減されるでしょう。

これら新機能群の基盤には、すべてGoogleの高性能AIモデル「Gemini」が採用されています。また、「Styling Agent」を利用すれば、企業のブランドイメージに合わせ、地図の色やスタイルを簡単にカスタマイズできます。機能とデザインを両立した独自の地図アプリが実現します。

Google開発者向けツールだけでなく、消費者向けの地図サービスにもGeminiの統合を進めています。今回の一連の発表は、地図アプリ開発のハードルを下げ、あらゆるビジネスで地理空間情報の価値を高めることを目指すものです。AIによる開発体験の革新は、今後さらに加速するでしょう。

Claude、MS365と連携し業務データ横断

Microsoft 365との連携

Teamsの会話を検索
Outlookのメールを分析
OneDrive上の文書を要約
手動アップロード不要で効率化

企業向けの新機能

社内データ横断のエンタープライズ検索
新人研修や専門家特定に貢献
Team/Enterpriseプランで利用可能
オープン規格MCPで接続

AI企業のAnthropicは、自社のAIアシスタントClaude」をMicrosoft 365の各種サービスと統合すると発表しました。これにより、ユーザーはWord文書やTeamsのメッセージ、Outlookのメールといった社内データをClaudeとの対話を通じて直接検索・分析できるようになります。今回のアップデートは、職場におけるClaude生産性と利便性を飛躍的に高めることを目的としています。

具体的には、「Microsoft 365コネクタ」を通じて、ClaudeはOneDriveやSharePoint上の文書を手動でアップロードすることなく直接参照できます。さらに、Outlookのメールスレッドを解析して文脈を把握したり、Teamsのチャット履歴や会議の要約から関連情報を抽出したりすることも可能です。この機能は、ClaudeのTeamプランおよびEnterpriseプランで利用できます。

今回のアップデートでは、企業内のあらゆるデータソースを横断的に検索できる新機能「エンタープライズ検索」も導入されました。多くの企業では、人事情報や顧客データなどが複数のアプリに散在しています。この機能を使えば、新入社員の研修や顧客フィードバックの分析、特定の分野の専門家探しなどを迅速に行えるようになります。

この連携は、Anthropicが提唱するオープンソース標準「Model Context Protocol (MCP)」によって実現されています。MCPはAIアプリケーションを様々なデータソースに接続するための規格であり、MicrosoftWindows OSレベルでの採用を表明するなど、この標準を重視しています。両社の技術的な協調関係がうかがえます。

Microsoftは自社のCopilot製品群でAnthropic製AIモデルの採用を拡大しており、両社の戦略的な提携関係はますます深まっています。これは、Microsoftが特定のAI企業、特にOpenAIへの過度な依存を避け、AIモデルの調達先を多様化しようとする動きの一環と見られます。今回の連携は、その象徴的な事例と言えるでしょう。

Amazon Quick Suite、MCPで企業連携を強化

MCPによる標準化された連携

MCP安全な接続を実現
カスタム統合が不要に

主要SaaSやエージェントと接続

Atlassian製品と連携
AWSナレッジベースに接続
Bedrock AgentCore経由でエージェント統合

業務自動化と生産性向上

チャットエージェントでの業務自動化
オンボーディング業務を効率化

Amazonは2025年10月13日、AIアシスタントサービス『Amazon Quick Suite』が、AIと企業アプリケーションの接続を標準化する『Model Context Protocol(MCP)』に対応したと発表しました。これにより、開発者は複雑なカスタム統合を必要とせず、AIエージェントを既存の業務ツールやデータベースに安全かつ容易に接続できるようになります。

MCPは、AIエージェントが企業のナレッジベースやアプリケーションと連携するためのセキュアな標準規格です。従来は個別に開発が必要だった連携処理が、MCPを利用することで大幅に簡素化されます。Amazon Quick SuiteのMCPクライアントは、この標準化された接続をサポートし、企業のAI導入ハードルを下げます。

具体的には、AtlassianのJiraやConfluenceといった主要プロジェクト管理ツールとのMCP連携が可能です。これにより、Quick Suiteのチャットエージェントは、ユーザーの指示に基づきJira課題の作成やConfluenceページの情報取得を自動で行えるようになります。チームの業務効率が飛躍的に向上するでしょう。

さらに、AWSが提供する公式ドキュメントやコードサンプルにアクセスする『AWS Knowledge MCP Server』とも接続できます。エンジニアは、チャット形式で最新のAWS技術情報を即座に取得可能になり、開発スピードの向上が期待されます。複数の情報源を横断した質問にも対応します。

より高度な活用として、『Amazon Bedrock AgentCore Gateway』を介した自社AIエージェントの統合も実現します。これにより、Amazon Kendraを内蔵したITヘルプデスクエージェントや、OpenAIを基盤としたHRサポートエージェントなど、既存のAI資産をQuick Suite上でシームレスに利用できます。

この連携は具体的な業務シーンで威力を発揮します。例えば、新入社員のオンボーディングでは、マネージャーがエージェントに指示するだけで、Confluenceからチェックリストを取得し、Jiraにタスクを作成して担当者を割り振るまでの一連のプロセスを自動化できます。

今回のMCP対応は、Amazon Quick Suiteを単なるAIチャットツールから、企業のあらゆるシステムとAIを繋ぐハブへと進化させる重要な一歩です。経営者エンジニアは、この新機能を活用することで、AIの投資対効果を最大化し、事業の競争力強化につなげることができるでしょう。

「AIエージェントが変えるウェブの未来」

エージェント・ウェブとは

人間中心からエージェント中心へ
人間の限界を超える情報処理
人間とエージェントの協業が主流

効率化と新たなリスク

利便性生産性の向上
経済全体の効率化
機密情報の漏洩や悪用

研究者によれば、自律的なAIエージェントがウェブの主要な利用者となり、エージェント・ウェブと呼ばれる根本的な再設計が必要になると指摘しています。この転換は利便性をもたらす一方で、重大なセキュリティリスクも伴います。

現在のウェブが人間中心に設計されているのに対し、未来のウェブではエージェント間の直接対話が主軸となります。これにより人間の視覚的な制約がなくなり、エージェントは膨大な情報を瞬時に処理可能になります。

最大のメリットは、ユーザーの効率性と生産性が劇的に向上することです。エージェントがより迅速に情報を探し出し、課題を効率的に完了させることで、デジタル経済全体の活性化も期待されます。

しかし、この転換は未曾有のセキュリティリスクを生み出します。高権限を持つエージェントが攻撃され、機密個人情報や金融データが漏洩したり、ユーザーの意図に反する悪意のある行動をとらされたりする危険性があります。

この新たなウェブを実現するには、エージェントの通信、身元確認、決済のための新たなプロトコルが必要です。GoogleのA2AやAnthropicMCPなどがその初期例として挙げられています。

エージェント・ウェブは避けられない未来と見なされていますが、まだ初期段階です。セキュリティ課題を克服するには、セキュア・バイ・デザインの枠組み開発と、コミュニティ全体での協力が不可欠です。

Claude Code、プラグインで開発環境を共有・標準化

プラグインの概要

各種開発機能を一括で共有
コマンド一つで簡単インストール
必要に応じON/OFFで切替可能

プラグインの活用例

チーム内の開発標準を統一
生産性向上のワークフローを共有
社内ツールへの接続を簡素化

プラグインマーケットプレイス

誰でもマーケットプレイスを構築可能
Gitリポジトリなどで簡単ホスト

AI開発企業Anthropicは2025年10月9日、コーディングアシスタントClaude Code」に新機能「プラグイン」をパブリックベータ版として追加しました。この機能により、開発者はスラッシュコマンドや専用エージェントなどのカスタム機能をパッケージ化し、チーム内で簡単に共有できます。開発環境の標準化や生産性向上を支援することが目的です。

プラグインは、これまで個別に設定していた複数の拡張機能を一つにまとめる仕組みです。具体的には、頻繁に使う操作を登録するスラッシュコマンドや、特定タスクに特化したサブエージェント、外部ツールと連携するMCPサーバー、動作をカスタマイズするフックなどを組み合わせ、コマンド一つでインストールできます。

この機能の最大の利点は、開発環境の標準化です。エンジニアリングリーダーは、コードレビューやテストのワークフローを定めたプラグインを配布することで、チーム全体の開発プロセスの一貫性を保てます。また、必要な時だけプラグインを有効化できるため、システムの複雑化を避けられるのも特徴です。

具体的な活用例は多岐にわたります。オープンソースのメンテナーが利用者をサポートするためのコマンド集を提供したり、熟練開発者が自身のデバッグ手法やデプロイ手順をプラグインとして共有したりできます。さらに、社内ツールやデータソースへの接続設定をパッケージ化し、セットアップ時間を短縮することも可能です。

プラグインの配布と発見を促す「マーケットプレイス」機能も提供されます。誰でも自身のプラグインをまとめたマーケットプレイスを作成し、Gitリポジトリなどで公開できます。これにより、優れた開発手法やツール連携のベストプラクティスがコミュニティ全体で共有され、エコシステムの拡大が期待されます。

プラグイン機能は現在、Claude Codeの全ユーザーがパブリックベータとして利用可能です。ターミナルやVS Code上で「/plugin」コマンドを実行するだけで始められます。Anthropicは公式ドキュメントでプラグインの作成方法やマーケットプレイスの公開手順を案内しており、開発者の積極的な活用を促しています。

Gemini CLIが外部連携を全面開放、オープンな拡張機能で開発生産性を劇的に向上

オープンな連携基盤を確立

Gemini CLIを拡張プラットフォームへ進化
外部ツールとの連携をコマンドラインで実現
開発者100万人が利用するAIエージェント
FigmaやStripeなど大手と連携開始

開発者主導の拡張性

Google非承認で公開できるオープン性
GitHubリポジトリでの手動インストールを推奨
Playbook機能でAIが使い方を即座学習
複雑な設定不要で意味のある結果を即時提供

Googleは、開発者向けAIシステム「Gemini CLI」に、外部ツールと連携するための拡張機能システムを正式に導入しました。これにより、100万人以上の開発者は、コマンドライン上で直接、FigmaやStripe、Dynatraceといった業界リーダーのサービスを利用可能になります。AIの力を借りて、開発者がターミナルと外部ツール間でのコンテキストスイッチングを排除し、生産性を劇的に高めることが目的です。

この拡張機能システムは、Gemini CLIを単なるコーディング補助ツールから「拡張性プラットフォーム」へと進化させます。拡張機能は外部ツールへの接続を可能にするだけでなく、AIエージェントがそのツールを効果的に使用するための「プレイブック」(組み込みの説明書)を含んでいます。これにより、開発者は複雑な設定なしに、最初のコマンドから意味のある結果を得ることができます。

特に注目すべきは、そのオープンなエコシステム戦略です。OpenAIChatGPTのアプリが厳しくキュレーションされているのに対し、Gemini CLIの拡張機能は、Googleの承認や関与なしに、誰でもGitHub上で開発・公開できます。これは「誰もが参加できる公正なエコシステム」を確立したいというGoogleの強い意志を反映しています。

ローンチ時点で、Figma(デザインコード生成)、Stripe(支払いサービスAPI連携)、Postman(API評価)、Shopify(開発者エコシステム連携)など、多数の主要パートナーが参画しています。これらの拡張機能をインストールするだけで、ターミナルが開発者統合されたツールチェーンの中心となり、デバッグCI/CDセキュリティチェックといった作業が効率化されます。

拡張機能は、Model Context Protocol (MCP) と呼ばれるツール連携の基盤上に構築されています。これにより、拡張機能は、ローカルファイルやGitステータスなどの環境コンテキストも利用し、開発者の意図通りに適切なツールと指示を実行します。この統合されたインテリジェンスが、開発現場におけるAIの利用価値を飛躍的に高めるでしょう。

Otter.aiが法人向けAPI公開、会議記録を「企業知識基盤」へ進化

Otter.aiの新戦略

従来の認識から企業向け知識基盤へ転換
API公開でJiraやHubSpotなどカスタム連携を実現
外部AIモデル連携を可能にするMCPサーバー導入
会議メモやプレゼンを検索するAIエージェント提供
会議データの情報サイロ化を解消し効率化
会話の記録を通じた企業成長と価値創出を支援
機密情報保護のためのアクセス制限機能も提供

会議記録AIを提供するOtter.aiは今週、法人向けの新製品スイートとAPIを発表しました。同社は、単なる会議の書き起こしツールという地位から脱却し、会議データを一元管理する「企業向け知識基盤(Corporate Knowledge Base)」へと戦略を転換します。CEOのサム・リアン氏は、この進化が企業の成長を加速させ、測定可能なビジネス価値を生み出すための「会話のシステム・オブ・レコード」になると強調しています。

この転換の核となるのがAPIの提供です。これにより、ユーザーはJiraやHubSpotといった外部プラットフォームとOtterのデータをカスタム連携できるようになります。会議で生まれた重要な情報を他の業務フローに自動的に組み込み、会議の記録を単なる文書として終わらせず、実務上の資産として活用することが可能になります。

新スイートには、さらに二つの主要機能が加わります。一つは、ユーザーのOtterデータを外部のAIモデルと連携させるMCPサーバー。もう一つは、企業の会議メモやプレゼンテーション全体を検索し、必要な情報を取り出すAIエージェントです。これらは、社内に点在する「会議知」を集約・活用しやすく設計されています。

背景には、AIブームにより会議記録ツールの市場競争が激化していることがあります。2022年以降、GranolaやCirclebackといった競合他社が台頭し、既存プレイヤーも注目を集めています。Otterは、こうしたレッドオーシャンから脱却し、知識管理というより高付加価値な領域にシフトすることで、ビジネスの拡大を目指しています。

リアン氏は、企業の非効率性の多くは「情報サイロ」から生じると指摘します。会議に存在する膨大な知識を一元化して広範に共有することで、チーム間の連携不足を解消できると期待されています。ただし、機密情報に関する会議については、ユーザーがアクセスを制限できるパーミッションシステムが用意されています。

一方で、AIによる広範な記録・共有はプライバシー上の懸念も伴います。同社は過去に無許可録音に関する集団訴訟の対象となっています。リアンCEOは、プライバシー懸念は業界全体の問題であるとしつつも、「我々は歴史の正しい側にいる」と主張。AIによるイノベーション推進には、会議にAIを導入し、情報へのアクセスを最大化することが不可欠であるとの見解を示しています。

ChatGPTがOS化へ。「Apps SDK」で外部アプリを統合

連携アプリの核心

ChatGPT内で完結する対話型アプリを実現
サードパーティ連携を可能にするApps SDKを発表
既存のGPTsとは異なる本格的なアプリ連携

対話を通じた機能実行

自然言語でアプリを呼び出しタスクを実行
地図・動画・資料などインタラクティブUI表示
Zillowで住宅検索、Canvaでデザイン生成

開発者への新機会

8億人超ChatGPTユーザーへリーチ
将来的にアプリ収益化と専用ストアを導入

OpenAIは年次開発者会議「DevDay」で、サードパーティ製アプリをChatGPT内に直接統合できる新ツール「Apps SDK」を発表しました。これにより、ChatGPTは単なるチャットボットから、AI駆動のオペレーティングシステム(OS)へと進化します。ZillowやSpotify、Canvaなどの有名サービスが既に連携を始めており、ユーザーはチャットを離れることなく、アプリの機能を自然言語で呼び出して利用できます。

Apps SDKの最大の特長は、従来のプラグインやGPTsと異なり、完全にインタラクティブなUIをチャット内に表示できる点です。例えば、ユーザーが特定の不動産検索すれば、チャットウィンドウ内にZillowの対話型マップが表示されます。これにより、会話の流れを中断せず、視覚的な要素や操作を通じてタスクを完了できるため、ユーザー体験が大幅に向上します。

具体的な利用シーンとして、Canva連携では、「次のセール用インスタグラム投稿を作成して」と依頼するだけで、デザイン案が生成されます。また、ExpediaやBooking.comとの連携により、旅行の計画やホテルの予約も会話を通じて完結します。これは、AIがユーザーの指示を理解し、外部サービスのアクションを代行するエージェント」機能の実現を意味します。

開発者にとって、Apps SDKは既存のシステムとAIを連携させる強力な手段です。これは、オープンスタンダードである「Model Context Protocol(MCP」に基づいて構築されており、既存の顧客ログインやプレミアム機能へのアクセスも容易になります。これにより、開発者8億人以上ChatGPTユーザーという巨大な流通チャネルを獲得可能です。

今後、OpenAIはアプリの収益化サポートを強化する予定です。「Agentic Commerce Protocol」により、チャット内での即時決済機能(インスタントチェックアウト)を導入する計画も示されました。さらに、法人・教育機関向けプランへの展開や、ユーザーがアプリを探せる専用ディレクトリの公開も予定されており、AIエコシステム構築が加速します。

AWS、Bedrock AgentCoreでSRE業務を高度化

AIアシスタントの仕組み

複数AIエージェントの連携
自然言語でのインフラ照会
リアルタイムでのデータ統合
障害対応手順書の自動実行

Bedrock AgentCoreの威力

既存APIをMCPツールに変換
対話履歴を記憶し応答を最適化
本番環境への容易な展開
本番グレードの監視機能を提供

Amazon Web Services(AWS)は、生成AI基盤「Amazon Bedrock」の新機能「AgentCore」を活用し、サイト信頼性エンジニアリング(SRE)業務を支援するマルチエージェントアシスタントの構築方法を公開しました。このシステムは、Kubernetesやログ、メトリクスなどを担当する複数の専門AIエージェントが連携し、自然言語での問い合わせに対して包括的かつ実用的な洞察を提供。インシデント対応の迅速化とインフラ管理の高度化を実現します。

なぜ今、SREアシスタントが求められるのでしょうか。現代の分散システムは複雑性が増し、障害発生時にはログ、メトリクス、イベントなど多様な情報源から原因を特定する必要があります。従来の手法では、SREが手作業で情報を繋ぎ合わせる必要があり、膨大な時間と労力がかかっていました。生成AIアシスタントは、このプロセスを自動化し、調査時間を劇的に短縮します。

このソリューションの中核は、スーパーバイザーエージェントが5つの専門エージェントを統括するマルチエージェントアーキテクチャです。問い合わせを受けると、スーパーバイザーが調査計画を立案し、Kubernetes、ログ、メトリクス、手順書(Runbook)の各専門エージェントに作業を割り振り。結果を集約して包括的なレポートを生成します。

技術的な鍵となるのが「Amazon Bedrock AgentCore」の各機能です。特に「Gateway」は、既存のインフラAPIをMCP(Model Context Protocol)という標準規格のツールに変換します。これにより、LangGraphのようなオープンソースのフレームワークで構築されたエージェントが、インフラAPIへシームレスかつ安全にアクセスできるようになります。

もう一つの強力な機能が「Memory」です。これは、過去の対話履歴やユーザーの役割(技術者、経営者など)を記憶し、応答をパーソナライズします。例えば、同じ障害について問い合わせても、技術者には詳細な技術分析を、経営者にはビジネス影響に焦点を当てた要約を提供するなど、相手に応じた最適な情報提供を可能にします。

開発から本番稼働への移行もスムーズです。「Runtime」機能を使えば、構築したエージェントをサーバーレス環境へ容易に展開できます。インフラ管理やスケーリングはAWSが自動で行い、セッションの分離も組み込まれているため、安全に運用可能です。さらに「Observability」機能により、本番環境でのエージェントの動作を詳細に監視、デバッグできます。

このAIアシスタントがもたらすビジネスインパクトは絶大です。従来30~45分を要していた初期調査が5~10分に短縮され、インシデント解決の迅速化とダウンタイムの削減に直結します。また、専門家の持つ「暗黙知」をシステム化することで、チーム全体の知識レベルを底上げし、属人性の排除にも貢献します。

Google、AI向け公開データサーバー公開 自然言語で統計情報にアクセス

Googleは2025年9月24日、AI開発者が自然言語で公開データにアクセスできる「Data Commons MCP Server」を公開しました。これにより国連や政府機関の信頼性が高い統計データをAIアプリに統合できます。不正確な情報に基づくAIのハルシネーション(幻覚)を抑制し、事実に基づいた開発を促進します。 「Data Commons」はGoogleが2018年から運営するプロジェクトで、国勢調査から気候統計まで様々な公的データを統合しています。MCP Serverは、この巨大なデータリポジトリとAIを繋ぐ架け橋です。開発者は複雑なAPIを操作せず、簡単な言葉で必要なデータを引き出せるようになります。 AIモデルは、しばしば不正確で未検証のウェブデータで学習され、事実に基づかない情報を生成する「ハルシネーション」が課題です。Googleは、高品質なデータへのアクセスを提供することで、AIの回答を現実世界の検証可能な情報に基づかせ、この問題の解決を目指します。 今回の鍵となる技術が、業界標準の「Model Context Protocol(MCP)」です。AIモデルが多様なデータソースと連携するための共通仕様で、Anthropic社が提唱しました。GoogleのほかOpenAIMicrosoftなども採用しており、エコシステム全体でのデータ連携を加速させます。 すでに具体的な活用事例も生まれています。NPO法人「ONE Campaign」は、MCP Serverを利用したAIツール「ONE Data Agent」を開発。アフリカの数千万件に及ぶ金融・健康関連データを平易な言葉で分析し、政策提言に役立てています。 MCP Serverは特定のLLM(大規模言語モデル)に依存しないオープンな設計です。Google開発者がすぐに試せるよう、Colabノートブックのサンプルや、Gemini CLIからのアクセス方法などをGitHubで公開しています。これにより、多くの開発者が公開データを活用しやすくなるでしょう。