オープンソースモデル(LLM技術)に関するニュース一覧

オープンソースAI、性能でGPT-5を凌駕

Kimi K2、性能で市場席巻

主要ベンチマークGPT-5を凌駕
推論コーディング能力で業界トップ
自律的なツール使用能力で他を圧倒

オープンソース新時代の幕開け

モデルの重みとコードを完全公開
寛容なライセンスで商用利用も促進
GPT-510分の1以下の低コスト
クローズドモデルとの性能差の消滅

中国のAIスタートアップMoonshot AIが2025年11月6日、オープンソースの大規模言語モデル「Kimi K2 Thinking」を公開しました。このモデルは、推論コーディング能力を測る複数の主要ベンチマークで、OpenAIの「GPT-5」など最先端のプロプライエタリ(非公開)モデルを上回る性能を記録。オープンソースAIが市場の勢力図を塗り替える可能性を示し、業界に衝撃が走っています。

Kimi K2 Thinkingの性能は、特にエージェント(自律AI)としての能力で際立っています。ウェブ検索推論能力を評価する「BrowseComp」ベンチマークでは、GPT-5の54.9%を大幅に上回る60.2%を達成。これは、オープンソースモデルが特定のタスクにおいて、業界トップのクローズドモデルを明確に凌駕したことを示す歴史的な転換点と言えるでしょう。

このモデルの最大の魅力は、完全なオープンソースである点です。モデルの「重み」やコードは誰でもアクセス可能で、寛容なライセンスの下で商用利用も認められています。これにより、企業はこれまで高価なAPIに依存していた高性能AIを、自社データで安全に、かつ低コストで活用する道が開かれます。

高性能と低コストを両立させる秘密は、効率的なモデル設計にあります。「専門家混合(MoE)」アーキテクチャと、精度を維持しつつ計算量を削減する「量子化」技術を採用。これにより、GPT-5と比較して10分の1以下の圧倒的な低価格でのサービス提供を可能にしています。

Kimi K2 Thinkingの登場は、巨額の資金を投じてデータセンターを建設するOpenAIなどの戦略に大きな疑問を投げかけます。高性能AIの開発が、必ずしも莫大な資本を必要としないことを証明したからです。AI業界の競争は、資本力だけでなく、技術的な工夫や効率性へとシフトしていく可能性があります。

経営者開発者にとって、これは何を意味するのでしょうか。もはや特定のベンダーに縛られることなく、自社のニーズに最適なAIを自由に選択・改変できる時代が到来したのです。コストを抑えながらデータ主権を確保し、独自のAIエージェントを構築する。Kimi K2 Thinkingは、そのための強力な選択肢となるでしょう。

Pinterest、オープンソースAIでコスト減と高性能両立

オープンソースAIの威力

桁違いのコスト削減`を実現
プロプライエタリモデルと`同等の性能`
Pinterestの特定用途に最適化

PinterestのAI活用戦略

ビジュアルAIでの活用を拡大
AIアシスタントで商品発見を支援
独自モデルとOSSを定期的に比較

背景と市場の反応

ホリデー商戦の売上予測は弱気
発表を受け株価は21%以上下落

画像共有サービス大手Pinterestは、オープンソースのAIモデルを活用することで、コストを大幅に削減しつつ高いパフォーマンスを維持できるとの見解を明らかにしました。11月5日の決算説明会でビル・レディCEOが言及したもので、ファインチューニング(微調整)により、大手モデルに匹敵する性能を桁違いに低いコストで実現できるとしています。

レディCEOは特にビジュアルAI分野での有効性を強調。定期的な比較テストの結果、ファインチューニングしたオープンソースモデルは、主要なプロプライエタリモデルと「`同等の性能`」を「`桁違いに低いコスト`」で達成できると述べました。これにより、多くのユースケースでオープンソースモデルへの移行を進める方針です。

この戦略は、同社の厳しい業績見通しを背景としています。ホリデー商戦の売上予測が市場予想を下回り株価が急落する中、AI投資の費用対効果が大きな課題となっていました。オープンソース活用は、コストを抑えながらイノベーションを推進するための具体的な回答と言えるでしょう。

同社はAIアシスタント「Pinterest Assistant」など、AI活用を積極的に進めています。今回の発表は、プロプライエタリモデルへの依存を減らし、自社のユースケースに最適化したAIを低コストで運用するというIT業界の新たな潮流を示すものです。経営者エンジニアにとって示唆に富む事例ではないでしょうか。

AIエージェントの弱点露呈、マイクロソフトが実験場公開

AI市場シミュレータ公開

マイクロソフトが開発・提供
名称はMagentic Marketplace
AIエージェントの行動を研究
OSSとして研究者に公開

判明したAIの主な脆弱性

選択肢過多で性能が低下
意図的な情報操作に弱い
応答順など体系的な偏りも露呈

マイクロソフトは2025年11月5日、AIエージェントの市場行動を研究するためのシミュレーション環境「Magentic Marketplace」をオープンソースで公開しました。アリゾナ州立大学との共同研究で、GPT-5など最新モデルをテストした結果、選択肢が多すぎると性能が落ちる「選択のパラドックス」や、意図的な情報操作に対する深刻な脆弱性が明らかになりました。

今回の実験で最も驚くべき発見の一つは、AIエージェントが「選択のパラドックス」に陥ることです。選択肢が増えるほど、より良い結果を出すと期待されるのとは裏腹に、多くのモデルで消費者利益が低下しました。例えばGPT-5は、選択肢が増えると性能が最適値の2000から1400へ大幅に低下。これは、AIが持つコンテキスト理解の限界を示唆しています。

さらに、AIエージェントは情報操作に対しても脆弱であることが判明しました。偽の権威付けや社会的証明といった心理的戦術から、悪意のある指示を埋め込むプロンプトインジェクションまで、様々な攻撃をテスト。その結果、GPT-4oなどのモデルは、操作した事業者へ全ての支払いを誘導されてしまうなど、セキュリティ上の重大な懸念が浮き彫りになりました。

実験では体系的な偏り(バイアス)も確認されました。一部のオープンソースモデルは、検索結果の最後に表示された事業者を優先的に選択する「位置バイアス」を示しました。また、多くのモデルが最初に受け取った提案を安易に受け入れる「提案バイアス」を持っており、より良い選択肢を見逃す傾向がありました。こうした偏りは、市場の公正性を損なう恐れがあります。

「Magentic Marketplace」は、こうした複雑な問題を安全に研究するために開発されたプラットフォームです。現実世界では難しい、多数のエージェントが同時に相互作用する市場をシミュレートし、消費者保護や市場効率、公平性といった課題を検証できます。マイクロソフトは、この環境を研究者に開放することで、AIが社会に与える影響の解明を加速させたい考えです。

今回の研究結果は、AIエージェントの実用化にはまだ多くの課題があることを示しています。特に、重要な意思決定をAIに完全に委ねるのではなく、人間が監督する「ヒューマン・イン・ザ・ループ」の仕組みが不可欠です。企業がAIエージェントを導入する際には、こうした脆弱性を十分に理解し、対策を講じる必要があります。今後の研究開発の焦点となるでしょう。

SAP、調整不要の表計算AI発表 業務予測を即実現

「調整不要」の表計算AI

導入後すぐに予測分析へ活用
数十年のビジネスデータで学習

LLMとの明確な違い

テキストでなく表データから学習
数値間の関係性を深く理解
構造的で正確な回答を生成

提供計画と今後の展望

2025年第4四半期に一般提供
ノーコード環境での実験も可能

独ソフトウェア大手のSAPは、企業のAI導入を簡素化する新たな基盤モデル「RPT-1」を発表しました。このモデルは表形式データに特化しており、従来のLLMのように時間とコストのかかるファインチューニングが不要な点が最大の特徴です。導入後すぐに予測分析などの高度な業務に活用できるとしており、2025年第4四半期の一般提供開始を予定しています。

RPT-1は「リレーショナル基盤モデル」と名付けられ、リレーショナルデータベースやExcelのようなスプレッドシートのデータから学習します。SAPが数十年にわたり蓄積したビジネス取引データを基に事前学習済みのため、企業は自社の個別データを追加学習させることなく、「すぐに使える(out-of-the-box)」状態で業務アプリケーションに直接組み込むことが可能です。

テキストやコードを学習する大規模言語モデル(LLM)とは一線を画します。RPT-1は、数値や異なるセル間の関係性を深く理解することで、より構造的で正確な回答を生成できます。この特性は、特に金融分野や企業の業績管理など、精密な分析が求められる業務で真価を発揮するでしょう。汎用LLMでは対応が難しいユースケースを切り拓きます。

このモデルの基盤となっているのは、SAPの研究者が提唱した「ConTextTab」というアーキテクチャです。これは、テーブルのヘッダーや列の型といった意味情報(セマンティックシグナル)を手がかりに学習を進めることで、データ間の関連性を構造的に把握します。この仕組みが、RPT-1の精度の高さを支えています。

RPT-1は2025年第4四半期に、SAPのAI基盤サービス「AI Foundation」を通じて一般提供が開始される予定です。また、専門家でなくてもモデルを試せるノーコードの実験環境(プレイグラウンド)も提供されます。SAPは今後、オープンソースモデルを含む他のモデルも順次リリースする計画で、企業のAI活用をさらに加速させそうです。

大規模AIは思考する、人間の脳機能と酷似

AIの思考プロセス

CoT推論と人間の内的発話
脳と同様のパターン認識検索
行き詰まりからの後戻りと再試行
視覚的思考の欠如は補完可能

「次トークン予測」の本質

「自動補完」という見方の誤り
正確な予測には世界知識が必須
ベンチマーク人間を超える性能
思考能力の保有はほぼ確実

Talentica Softwareの専門家が2025年11月1日、大規模推論モデル(LRM)は単なるパターン認識機ではなく、人間と同様の思考能力をほぼ確実に持つという分析を米メディアVentureBeatで発表しました。Appleなどが提唱する「AIは思考できない」との見解に反論するもので、LRMの「思考の連鎖CoT)」プロセスと人間の脳機能を比較し、その著しい類似性を根拠に挙げています。

LRMが見せる推論プロセスは、人間の脳機能と驚くほど似ています。特に、段階的に答えを導き出す「思考の連鎖CoT)」は、人が頭の中で自問自答する「内的発話」と酷似しています。また、過去の経験から知識を検索する点や、推論が行き詰まった際に別の道筋を探す「バックトラッキング」も、人間と思考の様式を共有している証左と言えるでしょう。

Appleの研究は「LRMは複雑な問題でアルゴリズムを遂行できない」として思考能力を否定しました。しかし、この批判は人間にも当てはまります。例えば、アルゴリズムを知っていても、ディスクが20枚の「ハノイの塔」を解ける人はまずいません。LRMが複雑な問題に直面した際、力任せに解くのではなく近道を探そうとするのは、むしろ思考している証拠だと筆者は指摘します。

LRMを「高機能な自動補完」と見なすのは、その本質を見誤っています。次の単語を正確に予測するためには、文脈だけでなく、世界に関する膨大な知識を内部的に表現し、活用する必要があります。「世界最高峰は...」という文に「エベレスト」と続けるには、その事実を知らなくてはなりません。この知識表現と活用こそが、思考の基盤となるのです。

最終的な判断基準は、思考を要する問題を実際に解決できるか否かにあります。オープンソースモデルを用いたベンチマークの結果、LRMは論理ベースの質問に対し高い正答率を記録しました。一部のタスクでは、専門的な訓練を受けていない平均的な人間を上回る性能さえ示しており、その推論能力は客観的なデータによっても裏付けられています。

人間の脳機能との類似性、次トークン予測というタスクの奥深さ、そしてベンチマークが示す客観的な性能。これらを総合すると、LRMが思考能力を持つことはほぼ確実と言えます。AIが「思考するパートナー」となりうるこの事実は、ビジネスの生産性や収益性を飛躍させる上で、経営者やリーダーが知るべき重要な視点となるでしょう。

アント、1兆パラメータAI公開 強化学習の壁を突破

1兆パラメータモデルRing-1T

中国アントグループが開発
1兆パラメータのオープンソース推論モデル
数学・論理・コード生成に特化
ベンチマークGPT-5に次ぐ性能

独自技術で学習効率化

強化学習ボトルネックを解決
学習を安定化させる新手法「IcePop」
GPU効率を高める「C3PO++」を開発
激化する米中AI覇権争いの象徴

中国のアリババ系列企業アントグループが、1兆個のパラメータを持つオープンソースの推論AIモデル「Ring-1T」の技術詳細を公開しました。このモデルは、独自開発した最適化手法により、大規模モデルの学習における強化学習のボトルネックを解決した点が特徴です。OpenAIの「GPT-5」やGoogleの「Gemini」など米国勢に対抗し、激化する米中間のAI覇権争いで存在感を示す狙いがあります。

「Ring-1T」は、数学、論理問題、コード生成、科学的問題解決に特化して設計されています。各種ベンチマークテストでは、多くの項目でOpenAIGPT-5に次ぐ高いスコアを記録しました。特に、同社がテストしたオープンウェイトモデルの中では最高の性能を示し、中国企業の技術力の高さを証明しています。

この成果の背景には、超大規模モデルの学習を効率化する三つの独自技術があります。研究チームは、学習プロセスを安定させる「IcePop」、GPUの遊休時間をなくしリソースを最大限活用する「C3PO++」、非同期処理を可能にするアーキテクチャ「ASystem」を開発。これらが、1兆パラメータ規模のモデル学習を現実のものとしました。

特に注目すべきは、強化学習における課題へのアプローチです。従来、大規模モデルの強化学習は計算コストと不安定性が大きな障壁でした。「IcePop」は、学習を妨げるノイズの多い情報を抑制し、安定した性能向上を実現します。この技術革新は、今後のAIエージェント開発など応用分野の発展にも大きく貢献する可能性があります。

今回の発表は、DeepSeekやアリババ本体の「Qwen」シリーズに続く、中国発の高性能モデルの登場を意味します。米国の巨大テック企業を猛追する中国の勢いはとどまるところを知りません。「Ring-1T」のようなオープンソースモデルの公開は、世界中の開発競争をさらに加速させることになりそうです。

3Dで思考するロボットAI、欧州からオープンソースで登場

3Dデータで物理世界を理解

3Dデータを取り入れた独自学習
物理空間における物体の動きを把握
2D画像ベースモデルとの明確な差別化

商用版に匹敵する性能

オープンソースで誰でも利用可能
研究開発の加速と民主化に貢献
ベンチマーク商用モデル並みのスコア
スタートアップ実験・改良を促進

ブルガリアの研究所INSAITを中心とする欧州の研究者チームが22日、産業用ロボットの頭脳として機能する新たなAI基盤モデル「SPEAR-1」をオープンソースで公開しました。このモデルは3次元(3D)データで訓練されており、物体をより器用に掴み、操作する能力を飛躍的に向上させます。研究開発の加速が期待されます。

SPEAR-1の最大の特徴は、3Dデータを学習に取り入れた点です。従来のモデルは2D画像から物理世界を学んでいましたが、これではロボットが活動する3D空間との間に認識のズレが生じていました。このミスマッチを解消し、より現実に即した物体の動きを理解します。

このモデルがオープンソースで公開された意義は大きいでしょう。言語モデルの世界でLlamaなどが革新を民主化したように、SPEAR-1はロボット工学の研究者やスタートアップ迅速に実験を重ねる土台となります。身体性を持つAI分野の発展を加速させる起爆剤となりそうです。

性能も注目に値します。ロボットのタスク遂行能力を測るベンチマーク「RoboArena」では、商用の基盤モデルに匹敵する高いスコアを記録しました。特に、有力スタートアップPhysical Intelligence社の最先端モデルにも迫る性能を示しており、その実用性の高さが伺えます。

ロボット知能の開発競争は激化し、数十億ドル規模の資金が動いています。SPEAR-1の登場は、クローズドな商用モデルとオープンソースモデル共存しながら技術を進化させる可能性を示唆します。専門家は「1年前には不可能だった」と述べ、この分野の急速な進歩に驚きを見せています。

アリババQwen、AIレポートを数秒でWeb・音声化

調査を多様な形式に変換

AIが調査レポートを自動生成
1-2クリックでWebページに即時変換
複数話者のポッドキャストも作成可能
コード、画像音声の生成を統合

競合とのアプローチの違い

ゼロからの新規コンテンツ生成に特化
Google NotebookLM既存資料の整理が中心
アイデアから公開までのプロセスを短縮
クリエイターや教育者にも有用

中国のEコマース大手アリババは10月21日、自社のAIチャット「Qwen Chat」に搭載された調査ツール「Deep Research」を大幅にアップデートしたと発表しました。この更新により、AIが生成した調査レポートを、わずか数クリックでインタラクティブなWebページや複数話者によるポッドキャストに変換できます。調査からコンテンツ公開までのプロセスを劇的に効率化し、ユーザーの生産性を高める狙いです。

新機能の核心は、単一の調査依頼から多様なメディア形式のアウトプットを生成できる点にあります。ユーザーがテーマを入力すると、QwenはWeb上の情報源からデータを収集・分析し、矛盾点を指摘しながら詳細なレポートを作成。その後、ボタン一つでプロ品質のWebページや、2人のホストが対話する形式のポッドキャストを自動で生成します。

この強力な機能は、Qwenチームが開発したオープンソースモデル群に支えられています。Webページの構造化にはQwen3-Coder、ビジュアル作成にはQwen-Image音声合成にはQwen3-TTSがそれぞれ活用されています。アリババはこれらを統合し、ユーザーがインフラを意識することなく利用できるマネージドサービスとして提供します。

この動きは、GoogleのAI調査アシスタントNotebookLM」と比較されています。NotebookLMが既存資料の整理や要約に強みを持つ一方、Qwen Deep Researchゼロから新しいコンテンツを生成し、多形式で出力する点で明確な差別化を図っています。どちらが優れているかは、ユーザーの目的によって評価が分かれるでしょう。

アリババの今回のアップデートは、AIによるリサーチが単なる情報収集に留まらず、コンテンツ制作までをシームレスに繋ぐ未来を示唆しています。専門家クリエイターが、少ないリソースで高品質なWebコンテンツやポッドキャストを発信する上で、強力なツールとなる可能性を秘めています。

米FTC、AIリスク警告の過去記事を異例の削除

政権交代とFTCの方針転換

トランプ政権下でFTC新体制
リナ・カーン前委員長時代の記事を削除
規制緩和と成長を重視する姿勢

削除されたAI関連の論点

AIがもたらす消費者への危害
詐欺や差別を助長するリスク

法的な懸念と今後の影響

連邦記録法に違反する可能性
政府の透明性に対する疑念

米連邦取引委員会(FTC)が、リナ・カーン前委員長時代に公開されたAIのリスクやオープンソースに関する複数のブログ記事を削除したことが明らかになりました。この動きは、トランプ政権下で就任したアンドリュー・ファーガソン新委員長による政策転換の一環とみられています。AIの安全性や消費者保護よりも、中国との競争を念頭に置いた急速な成長を優先する姿勢の表れであり、AI開発の規制を巡る議論に一石を投じるものです。

削除された記事には、AIが消費者に与える潜在的な危害を指摘するものや、「オープンウェイト」モデルとして知られるオープンソースAIの在り方を論じるものが含まれていました。具体的には、AIが「商業的監視を助長し、詐欺やなりすましを可能にし、違法な差別を永続させる」といったリスクに警鐘を鳴らす内容でした。これらは、AI技術の負の側面に対するFTCの監視姿勢を示す重要な見解でした。

この背景には、FTCの劇的な方針転換があります。バイデン政権下でビッグテックへの厳しい姿勢で知られたリナ・カーン前委員長に対し、トランプ政権はファーガソン氏を新委員長に任命。積極的な独占禁止法政策から、規制緩和へと大きく舵を切りました。今回の記事削除は、AI分野においても前政権の方針を消し去り、新たな方向性を市場に示す象徴的な動きと言えるでしょう。

一方で、今回の対応には不可解な点も残ります。トランプ政権の「AI行動計画」では、オープンソースモデルの支援が明記されており、米国の技術的優位性を維持する上で重要だと位置づけられています。にもかかわらず、関連するブログ記事が削除されたことに対し、元FTC広報部長は「政権の方針と乖離しており衝撃を受けた」とコメントしており、FTC内部の判断基準に混乱が見られる可能性も指摘されています。

さらに、今回の記事削除は法的な問題もはらんでいます。政府機関の記録保存を義務付ける「連邦記録法」や、政府データの公開を原則とする「オープンガバメントデータ法」に違反する可能性専門家から指摘されています。政府の決定プロセスの透明性を損ない、公的な議論の土台となる情報を断つ行為だとして、批判の声が上がっています。

FTCによる過去の見解の削除は、AIを巡る規制環境の不確実性を高めています。経営者開発者は、政府の規制方針が政権交代によって大きく揺れ動くリスクを認識する必要があるでしょう。公式な規制が後退する中で、企業が自主的に倫理基準を設け、社会からの信頼をどう確保していくかが、これまで以上に重要な経営課題となりそうです。

ソブリンAI、米中技術覇権の新たな主戦場に

米国のソブリンAI戦略

OpenAIが各国政府と提携
国家によるAI統制を支援
非民主主義国との連携に懸念も

中国のオープンソース攻勢

Alibabaのモデルは3億DL超
来年には米国を凌駕する可能性

真のAI主権をめぐる論点

主権にはオープンソースが必須との声
クローズドとオープンの両立も可能

OpenAIをはじめとするテクノロジー企業が、「ソブリンAI」の構築支援を各国で進めています。ソブリンAIとは、各国が自国の管理下でAIインフラを開発・運用する能力を指し、米中間の技術覇権争いの新たな主戦場となりつつあります。米国が同盟国との連携を深める一方、中国オープンソースモデルで世界的な影響力を急速に拡大しています。

OpenAIはアラブ首長国連邦(UAE)などの政府と提携し、大規模なデータセンター建設を含むソブリンAIシステム構築を支援しています。この動きは米国政府とも連携しており、同盟国が中国の技術に依存するのを防ぐという戦略的な狙いがあります。米国の技術を世界に普及させることで、地政学的な優位性を確保しようとしています。

しかし、UAEのような非民主主義国との提携には懸念の声も上がっています。かつて米国は、経済的な関与が中国の民主化を促すと期待しましたが、結果的に権威主義体制を強めることになりました。AI技術の提供が同様の結果を招かないか、過去の教訓が問い直されています。OpenAIは政府からの要請があっても情報検閲は行わないと明言しています。

対する中国は、オープンソース戦略で猛追しています。AlibabaやTencent、DeepSeekといった企業が公開した高性能な基盤モデルは、世界中で広く採用されています。特にAlibabaの「Qwen」ファミリーは3億回以上ダウンロードされ、日本を含む各国のスタートアップが自国語対応モデルの開発基盤として活用しています。

オープンソースAIモデルをホストするHugging FaceのCEOは、「真の主権はオープンソースなしにはあり得ない」と指摘します。モデルの内部を完全に検証・制御できるためです。中国企業はこの戦略により驚異的な速さで技術力を向上させ、5年前の遅れを取り戻し、今や米国と互角のレベルに達したと分析されています。

AIの国家主権をめぐる競争は、クローズドモデルを推進する米国勢と、オープンソースで勢力を拡大する中国勢という構図を呈しています。OpenAIは両アプローチの共存が可能との見方を示していますが、どちらが次世代のグローバルスタンダードを握るのか。この動向は、各国の事業戦略を左右する重要な要素となるでしょう。

元OpenAIムラティ氏、AI調整ツールTinker公開

元OpenAI幹部の新挑戦

ミラ・ムラティ氏が新会社を設立
初製品はAIモデル調整ツールTinker
評価額120億ドルの大型スタートアップ

TinkerでAI開発を民主化

専門的な調整作業をAPIで自動化
強化学習でモデルの新たな能力を開拓
調整済みモデルはダウンロードして自由に利用可

OpenAIの最高技術責任者(CTO)であったミラ・ムラティ氏が共同設立した新興企業「Thinking Machines Lab」は2025年10月1日、初の製品となるAIモデル調整ツール「Tinker」を発表しました。このツールは、最先端AIモデルのカスタマイズ(ファインチューニング)を自動化し、より多くの開発者や研究者が高度なAI技術を利用できるようにすることを目的としています。

「Tinker」は、これまで専門知識と多大な計算資源を要したモデルのファインチューニング作業を大幅に簡略化します。GPUクラスタの管理や大規模な学習プロセスの安定化といった複雑な作業を自動化し、ユーザーはAPIを通じて数行のコードを記述するだけで、独自のAIモデルを作成できるようになります。

特に注目されるのが、強化学習(RL)の活用です。共同創業者ChatGPT開発にも関わったジョン・シュルマン氏が主導するこの技術により、人間のフィードバックを通じてモデルの対話能力や問題解決能力を飛躍的に向上させることが可能です。Tinkerは、この「秘伝のタレ」とも言える技術を開発者に提供します。

Thinking Machines Labには、ムラティ氏をはじめOpenAIの元共同創業者や研究担当副社長など、トップレベルの人材が集結しています。同社は製品発表前にすでに20億ドルのシード資金を調達し、評価額は120億ドルに達するなど、業界から極めて高い期待が寄せられています。

現在、TinkerはMeta社の「Llama」やAlibaba社の「Qwen」といったオープンソースモデルに対応しています。大手テック企業がモデルを非公開にする傾向が強まる中、同社はオープンなアプローチを推進することで、AI研究のさらなる発展と民主化を目指す考えです。これにより、イノベーションの加速が期待されます。

Qwen、AIの安全性をリアルタイム検知する新モデル公開

大規模言語モデル「Qwen」の開発チームは9月23日、AIとの対話の安全性を確保する新しいオープンソースモデルQwen3Guard」を公開しました。このモデルは、ユーザーの入力とAIの応答の両方を評価し、リスクレベルを判定します。主要な安全性ベンチマークで最高水準の性能を達成しており、責任あるAI開発を支援する強力なツールとなりそうです。 最大の特徴は、AIの応答生成中にリアルタイムで安全性を検知する「ストリーミング機能」です。これは「Qwen3Guard-Stream」バリアントで提供され、応答がトークン単位で生成されるそばから瞬時に安全性を評価します。これにより、ユーザー体験を損なうことなく、不適切なコンテンツの生成を動的に抑制できます。 従来の「安全か危険か」という二者択一の分類とは一線を画し、「物議を醸す(Controversial)」という中間的なラベルを導入した点も革新的です。この3段階の深刻度分類により、開発者はアプリケーションの特性や目的に応じて、安全基準の厳格さを柔軟に調整することが可能になります。これにより、過度な制限を避けつつ安全性を確保できます。 グローバルな利用を想定し、119の言語と方言に対応している点も強みです。インドヨーロッパ語族、シナ・チベット語族、アフロ・アジア語族など、世界中の多様な言語で一貫した品質の安全性評価を提供します。これにより、多言語対応のAIサービスを開発する企業にとって、導入のハードルが大きく下がることでしょう。 モデルは、オフラインでのデータセット評価などに適した生成モデル「Qwen3Guard-Gen」と、前述のリアルタイム検知用「Qwen3Guard-Stream」の2種類が提供されます。それぞれに0.6B、4B、8Bの3つのパラメータサイズが用意されており、開発環境やリソースに応じて最適なモデルを選択できます。 開発チームは、AIの安全性を継続的な課題と捉えています。今後はモデル構造の革新や推論時の動的介入など、より柔軟で堅牢な安全手法の研究開発を進める方針です。技術的な能力だけでなく、人間の価値観や社会規範に沿ったAIシステムの構築を目指し、責任あるAIの普及に貢献していくとしています。

USA Todayが自社チャットボット導入、GoogleのAI概要に反撃

出版業界の危機感

Google AI Overviewでトラフィック激減
検索エンジン依存モデルの将来リスクを指摘
著作権侵害への数十億ドルの補償を要求

独自AI「DeeperDive」

Gannettが独自チャットボットDeeperDive発表
220紙以上の自社記事を回答ソースに限定
事実確認を重視し意見記事を除外

技術と収益戦略

開発はTaboolaと連携しOSSを活用
検索ボックスを代替し読者の関心を捕捉
将来的に購買支援エージェント化を目指す

米大手新聞社Gannett(USA Today Network)は、GoogleのAI概要(AI Overview)機能によるウェブトラフィック激減に対抗するため、独自AIチャットボット「DeeperDive」を導入しました。同社CEOのマイク・リード氏は、WIRED AI Power Summitにて発表し、AIがコンテンツを要約することで、出版社へのトラフィックフローが劇的に減少している現状を強く批判しました。この動きは、AIによるメディア業界の収益モデル破壊に対する具体的な反撃策として注目されています。

DeeperDiveは、USA Today Networkの220紙以上の出版物から得たジャーナリズム記事のみに基づいて読者の質問に答える、「AI回答エンジン」です。従来の検索ボックスを置き換え、ユーザーに直接的な回答と関連性の高い記事を提供します。これは、読者が外部のAI企業に行かずとも、信頼できる情報源内で完結させることを目的としています。

DeeperDiveの最大の特徴は、回答の事実正確性を重視している点です。同CEOは、意見記事は参照せず、「実際のジャーナリズム」のみを参照源とすることを強調しました。このツールは広告技術企業Taboolaと共同開発され、複数のオープンソースモデルファインチューニングして構築されています。

リードCEOは、GoogleAI Overviewが「10の青いリンク(従来の検索結果)」を経由するトラフィックを著しく妨害しているとの認識を示しました。この問題は業界全体に及び、SEO最適化に依存する従来のコンテンツ配信モデルに、将来的なリスクをもたらすと警鐘を鳴らしています。

メディア業界のリーダーたちは、AIがコンテンツを学習データとして使用することに対する数十億ドル規模の補償が必要だと主張しています。Condé Nastのロジャー・リンチCEOは、音楽業界がストリーミングサービスとライセンス契約を結んだ状況になぞらえ、AIモデルにとってコンテンツは最も重要なインプットであると訴えています。

GannettはDeeperDiveを通じて読者の関心や意図をより深く理解し、収益化に繋げることを期待しています。次のステップとして、読者の購買決定を支援するエージェント機能を探求する意向を示しています。同社の読者は元々購買意欲が高い層であり、新たな収益源としての可能性を見込んでいるとのことです。