CI/CD(ソフトウェア開発)に関するニュース一覧

GitHub年次報告:開発は『小さく速い』反復型へ

変化する開発の常識

大規模リリースから小規模・高頻度の反復へ
リスクを低減する軽量コミットの常態化
レビューしやすい小規模プルリクエスト
未完成機能を安全に公開する機能フラグの活用

自動化が支える新手法

プッシュを起点とするCI/CDの全面自動化
自動テストの実行時間が前年比35%増
非同期化が進むチームの意思疎通
AI活用でさらに加速する開発サイクル

GitHubが2025年版の年次レポート「Octoverse」を発表しました。同レポートは、AIの台頭により開発者ワークフローが「小さく、速く、頻繁な」反復型へと根本的に変化していることを明らかにしています。昨年のコミット数は9億8600万回に達し、開発の高速化がデータで裏付けられました。

かつて主流だった四半期ごとの大規模リリースは姿を消しつつあります。現在のトレンドは、バグ修正や小規模な機能追加といった単位で、継続的にコードをプッシュする軽量なコミットです。この手法は、問題発生時の原因特定や修正を容易にし、開発リスクを大幅に低減します。

この高速な反復を支えるのが、「フィーチャーフラグ」と「CI/CD」です。フィーチャーフラグは未完成の機能を安全に本番環境へ導入する技術。CI/CDパイプラインはプッシュを起点にテストやデプロイ完全に自動化し、手動作業を過去のものにしつつあります。

レビュー文化も変化しています。巨大なプルリクエストは敬遠され、目的を一つに絞った小規模なものが主流になりました。これによりレビューの心理的・時間的負担が軽減。同時に、自動テストの重要性が増し、GitHub Actionsでのテスト実行時間は昨年比で35%も増加しています。

開発手法の変化は、チームのコミュニケーションにも影響を及ぼしています。日々の進捗報告は非同期で行われるようになり、会議は減少傾向に。採用においても、単なる技術力だけでなく、高速な開発サイクルに対応できる能力と明確な意思疎通能力が重視されるようになっています。

一部で「AI疲れ」も指摘されますが、生産性を真に向上させるツールは淘汰を経て定着するでしょう。今後は仕様書とコードがより一体化し、AIを前提とした新たな開発の「標準」が生まれると見られています。変化の波は、まだ始まったばかりなのかもしれません。

AIモデルの安全強化へ Hugging FaceとVirusTotalが提携

提携の概要と仕組み

220万超の全公開資産を常時スキャン
VirusTotalの脅威データベースと連携
ファイルハッシュ照合でプライバシー保護

ユーザーと企業への恩恵

ダウンロード前にファイルの安全性を可視化
悪意ある資産の拡散を未然に防止
CI/CDへの統合で開発効率を向上
信頼できるオープンソースAIエコシステムの構築

AIモデル共有プラットフォーム大手のHugging Faceは2025年10月23日、脅威インテリジェンスで世界をリードするVirusTotalとの協業を発表しました。この提携により、Hugging Face Hubで公開されている220万以上の全AIモデルとデータセットがVirusTotalによって継続的にスキャンされます。AI開発におけるセキュリティリスクを低減し、コミュニティ全体を悪意のあるファイルから保護することが目的です。

なぜ今、AIのセキュリティが重要なのでしょうか。AIモデルは、モデルファイルやデータに偽装されたマルウェア、不正なコードを実行する依存関係など、隠れた脅威を内包する可能性があります。プラットフォームが拡大するにつれ、共有される資産の安全性を担保することが、エコシステム全体の信頼性を維持する上で不可欠な課題となっています。

今回の連携では、ユーザーがHugging Face Hub上のファイルにアクセスすると、そのファイルのハッシュ値がVirusTotalのデータベースと自動で照合されます。ファイルの中身自体は共有されないため、プライバシーは保護されます。過去に悪意あると分析されたファイルであれば、その情報が表示され、ユーザーはダウンロード前にリスクを把握できます。

この協業は、開発者や企業に大きな恩恵をもたらします。ファイルの安全性が可視化されることで透明性が高まるだけでなく、企業はセキュリティチェックをCI/CD(継続的インテグレーション/継続的デプロイメント)のパイプラインに組み込めます。これにより、悪意ある資産の拡散を未然に防ぎ、開発の効率性と安全性を両立させることが可能になります。

Hugging FaceとVirusTotalの提携は、オープンソースAIのコラボレーションを「設計段階から安全(セキュア・バイ・デザイン)」にするための重要な一歩です。開発者が安心してモデルを共有・利用できる環境を整えることで、AI技術の健全な発展とイノベーションを強力に後押しすることになるでしょう。

Vercel、30vCPU搭載の高速ビルド機導入

新Turboビルドマシンの概要

全有料プランで利用可能
30vCPUと60GBメモリ搭載
従量課金制でプロジェクト単位で有効化

主な用途と導入効果

Turbopackビルドに最適
大規模モノレポの並列処理
静的生成を高速化
依存関係の解決を高速化

WebホスティングプラットフォームのVercelは2025年10月22日、全有料プラン向けに「Turboビルドマシン」の提供を開始したと発表しました。この新マシンは30vCPUと60GBメモリを搭載し、過去最速のビルド性能を実現します。プロジェクト単位で有効化でき、従量課金制で利用可能です。

新たに提供されるTurboビルドマシンは、30vCPUと60GBメモリという強力なスペックを誇ります。この潤沢なリソースにより、特に大規模なプロジェクトのビルド時間を大幅に短縮することが期待されます。利用はプロジェクト単位で選択でき、コストは使用量に応じて発生します。

このマシンは、特にNext.jsで利用される高速バンドラー「Turbopack」でのビルドや、大規模なモノレポ(単一リポジトリでの複数プロジェクト管理)での並列タスク実行に最適化されています。複雑なプロジェクト構造を持つ開発チームの生産性を大きく向上させるでしょう。

具体的な効果として、静的サイト生成(SSG)や、プロジェクトが依存するライブラリの解決処理が高速化されます。これにより、開発者CI/CDパイプラインの待ち時間を削減し、より迅速なデプロイメントとイテレーション(反復開発)を実現できます。

開発者はプロジェクト設定からTurboビルドマシンを有効化するだけで、すぐに高速なビルド環境を手に入れることができます。Vercelは、エンタープライズ規模の複雑な開発ニーズに応えることで、フロントエンド開発の生産性向上を強力に支援する姿勢を明確にしました。

Gemini CLIが外部連携を全面開放、オープンな拡張機能で開発生産性を劇的に向上

オープンな連携基盤を確立

Gemini CLIを拡張プラットフォームへ進化
外部ツールとの連携をコマンドラインで実現
開発者100万人が利用するAIエージェント
FigmaやStripeなど大手と連携開始

開発者主導の拡張性

Google非承認で公開できるオープン性
GitHubリポジトリでの手動インストールを推奨
Playbook機能でAIが使い方を即座学習
複雑な設定不要で意味のある結果を即時提供

Googleは、開発者向けAIシステム「Gemini CLI」に、外部ツールと連携するための拡張機能システムを正式に導入しました。これにより、100万人以上の開発者は、コマンドライン上で直接、FigmaやStripe、Dynatraceといった業界リーダーのサービスを利用可能になります。AIの力を借りて、開発者がターミナルと外部ツール間でのコンテキストスイッチングを排除し、生産性を劇的に高めることが目的です。

この拡張機能システムは、Gemini CLIを単なるコーディング補助ツールから「拡張性プラットフォーム」へと進化させます。拡張機能は外部ツールへの接続を可能にするだけでなく、AIエージェントがそのツールを効果的に使用するための「プレイブック」(組み込みの説明書)を含んでいます。これにより、開発者は複雑な設定なしに、最初のコマンドから意味のある結果を得ることができます。

特に注目すべきは、そのオープンなエコシステム戦略です。OpenAIChatGPTのアプリが厳しくキュレーションされているのに対し、Gemini CLIの拡張機能は、Googleの承認や関与なしに、誰でもGitHub上で開発・公開できます。これは「誰もが参加できる公正なエコシステム」を確立したいというGoogleの強い意志を反映しています。

ローンチ時点で、Figma(デザインコード生成)、Stripe(支払いサービスAPI連携)、Postman(API評価)、Shopify(開発者エコシステム連携)など、多数の主要パートナーが参画しています。これらの拡張機能をインストールするだけで、ターミナルが開発者統合されたツールチェーンの中心となり、デバッグCI/CDセキュリティチェックといった作業が効率化されます。

拡張機能は、Model Context Protocol (MCP) と呼ばれるツール連携の基盤上に構築されています。これにより、拡張機能は、ローカルファイルやGitステータスなどの環境コンテキストも利用し、開発者の意図通りに適切なツールと指示を実行します。この統合されたインテリジェンスが、開発現場におけるAIの利用価値を飛躍的に高めるでしょう。

OpenAI「Codex」一般提供開始、Slack連携とSDKで開発を加速

開発を加速する新機能

Slack連携によるタスクの直接委任
Codex SDKで独自のワークフローへ統合
環境制御・監視を行う管理者向けツール追加
CI/CD向けにGitHub Actionsも提供開始

実証された生産性向上

日常利用が8月以降10倍以上に急増
OpenAI社内PRマージ数が週70%増加
Ciscoは複雑なレビュー時間を最大50%削減
Instacartは技術的負債の自動クリーンアップを実現

OpenAIは、コード生成とレビューを支援するコーディングエージェントCodex」の一般提供(GA)開始を発表しました。これにより、新たなSlack連携機能やCodex SDKが提供され、開発チームは既存のワークフロー内でAIをシームレスに活用できるようになります。世界中のスタートアップや大企業で採用が進んでおり、開発効率の劇的な向上が期待されています。

Codexは研究プレビュー開始以来、飛躍的に進化し、日常利用は8月上旬から10倍以上に急増しました。OpenAI社内ではほぼ全てのエンジニアが利用しており、プルリクエスト(PR)のマージ数が週70%増加しています。さらに、Codexが自動でPRをレビューし、本番環境に到達する前に重大な問題点を検出するなど、コード品質維持にも貢献しています。

今回のGAにおける目玉は、エンジニアリングワークフローに直接組み込むための「Codex SDK」と「Slack連携」です。SDKを利用すれば、Codex CLIの核となる強力なエージェントを独自のツールやアプリに数行のコードで統合できます。また、Slackから直接Codexにタスクを委任できるため、チームコラボレーションを効率化します。

大規模導入を進める企業向けには、新しい管理者ツールが追加されました。これにより、ChatGPTワークスペース管理者は、クラウド環境の制御、ローカル利用における安全なデフォルト設定の適用が可能になります。加えて、利用状況やコードレビューの品質を追跡するための分析ダッシュボードが提供され、ガバナンスと監視が強化されます。

導入事例として、Ciscoでは複雑なプルリクエストのレビュー時間を最大50%削減し、エンジニアはより創造的な業務に集中できています。また、InstacartではCodex SDKを統合し、ワンクリックでのエンドツーエンドのタスク完了や、デッドコードなどの技術的負債を自動で解消し、コードベース全体のレイテンシ改善に役立っています。

Slack連携およびSDKは、ChatGPT Plus、Pro、Business、Edu、Enterpriseの各プランで利用可能です。管理者向け機能は、企業での利用を想定しBusiness、Edu、Enterpriseプランに限定されています。OpenAIは、Codexを通じて開発者生産性を根本から変革することを目指しています。

GoogleのAIコーディング支援、APIとCLIで開発を加速

開発ワークフローに直接統合

ターミナルで直接操作するCLI提供
API公開でシステム連携が可能に
SlackCI/CDパイプラインへ統合
作業環境の切替コストを大幅削減

Julesの進化と今後の展望

対話履歴を記憶するメモリ機能を搭載
Gemini 2.5 Proを基盤に動作
GitHub以外のバージョン管理も検討
プロ向け有料プランで利用上限拡大

Googleは10月2日、AIコーディングエージェント「Jules」を開発者ワークフローに深く統合するための新機能を発表しました。新たに提供されるコマンドラインインターフェース(CLI)とパブリックAPIにより、開発者はターミナルや既存ツールからJulesを直接利用できます。これは、開発環境の切り替え(コンテキストスイッチ)を減らし、生産性を向上させることが目的です。

今回のアップデートの核心は、開発者が日常的に使用するツールへの統合です。新CLI「Jules Tools」を使えば、WebサイトやGitHubを開くことなく、使い慣れたターミナル上でJulesにコーディングタスクを指示できます。また、公開されたAPIは、SlackCI/CDパイプラインといった既存システムとの連携を可能にし、開発ワークフローの自動化を促進します。

Julesは、同じくGoogleが提供する「Gemini CLI」とは異なる役割を担います。Julesは、ユーザーが計画を承認すると自律的にタスクを遂行する非同期型のエージェントとして設計されています。一方、Gemini CLIは、ユーザーと対話を重ねながら作業を進める、より反復的な共同作業を想定しており、用途に応じた使い分けが求められます。

GoogleはJulesの機能強化を継続的に進めています。最近では、過去の対話やユーザーの好みを記憶する「メモリ機能」を導入しました。これにより、タスクを依頼するたびに同じ指示を繰り返す必要がなくなり、よりパーソナライズされたアシスタントとして進化しています。ファイルシステムの改善なども行われ、信頼性と品質が向上しています。

今後の展望として、Julesの利用環境の拡大が挙げられます。現在はGitHubリポジトリ内での利用が前提ですが、今後は他のバージョン管理システムへの対応も検討されています。これが実現すれば、より多様な開発環境でJulesの能力を活用できるようになり、開発者コミュニティにとって大きなメリットとなるでしょう。

AIエージェントの自律性が高まる一方、人間の監督も重要です。Julesは、タスクの実行中に行き詰まった場合、自ら処理を中断し、ユーザーに質問するように設計されています。これにより、AIが意図しない動作をするリスクを低減し、開発者が安心してタスクを委任できる信頼関係の構築を目指しています。

GV、CI/CDのBlacksmithに再投資 ベアメタル活用で開発を加速

異例の速さで資金調達

GVがわずか4ヶ月で追加投資
シリーズAで1000万ドルを調達完了
ARR(年間収益)は350万ドルに急増

開発速度を革新する技術

CI/CD処理にベアメタルを採用
処理速度を最大2倍に高速化
計算コストを最大75%の大幅削減

継続的インテグレーション・デリバリー(CI/CD)を提供するスタートアップBlacksmithは、シードラウンドからわずか4ヶ月で、Google Ventures(GV)主導のシリーズAラウンドを実施し、1000万ドル(約15億円)を調達しました。AI駆動のソフトウェア開発が加速する中、コードのリリース速度を劇的に高める同社の実績と市場拡大の可能性が評価され、GVは異例の速さで追加投資を決定しました。

Blacksmithの成長は目覚ましいものがあります。今年2月にわずか4人のチームでARR(年間経常収益)100万ドルを達成しましたが、現在は従業員8名体制でARRは350万ドルに急増しています。顧客数も700社を超えており、この短期間での確かな実績が、GVが短期間で大規模な追加投資を決断する決め手となりました。

同社の最大の強みは、従来のCI/CDプロセスが抱える高コストで予測不可能なテスト実行の課題を解消した点です。一般的なクラウドサービスをレンタルするのではなく、高性能なゲーミンググレードのCPUをベアメタル環境で活用しています。これにより、同社はリソースの経済性を完全に制御しています。

この独自のアプローチの結果、Blacksmithは顧客企業に対し、処理速度を最大2倍に高め、計算コストを最大75%削減できると主張しています。導入も容易であり、既存のコードを一行変更するだけで切り替えが完了します。これにより、企業は数分以内にコードの出荷プロセスを高速化することが可能です。

Blacksmithは、主にエンジニアを500人以上抱える大規模な開発チームをターゲットとしています。同サービスはGitHub Actionsと連携し、テスト分析や深い可視化機能を提供することで、既存のCI/CDプラットフォームを補完します。AIエージェントの普及は開発市場を広げ、同社の成長を後押ししています。

創業者は、Cockroach LabsやFaireなどの企業で大規模な分散システムを構築した経験を持ちます。CIにおけるビルドやユニットテストの非効率性を痛感した経験が、このサービス開発の原点です。今回のシリーズAには、Cockroach LabsのCEOら既存投資家も再参加しています。