評価額(経済・金融・投資)に関するニュース一覧

Anthropic、法人需要で'28年売上10兆円超予測

驚異的な成長予測

'28年売上700億ドル(約10兆円)
'28年キャッシュフロー170億ドル
来年のARR目標は最大260億ドル
粗利益率は77%に改善('28年予測)

B2B戦略が成長を牽引

Microsoft等との戦略的提携を強化
Deloitteなど大企業へ大規模導入
低コストモデルで企業ニーズに対応
API売上はOpenAI2倍超を予測

AIスタートアップAnthropicが、法人向け(B2B)製品の需要急増を背景に、2028年までに売上高700億ドル(約10.5兆円)、キャッシュフロー170億ドルという驚異的な財務予測を立てていることが報じられました。MicrosoftSalesforceといった大手企業との提携強化が、この急成長を支える中核となっています。

同社の成長速度は目覚ましく、2025年末には年間経常収益(ARR)90億ドルを達成し、2026年には最大260億ドルに達する目標を掲げています。特に、AIモデルへのアクセスを販売するAPI事業の今年の売上は38億ドルを見込み、これは競合のOpenAIの予測額の2倍以上に相当します。

成長の原動力は、徹底した法人向け戦略です。Microsoftは自社の「Microsoft 365」や「Copilot」にAnthropicのモデルを統合。さらに、コンサルティング大手のDeloitteやCognizantでは、数十万人の従業員がAIアシスタントClaude」を利用する計画が進んでいます。

製品面でも企業の大量導入を後押しします。最近では「Claude Sonnet 4.5」など、より小型でコスト効率の高いモデルを相次いで投入。これにより、企業はAIを大規模に展開しやすくなります。金融サービス特化版や社内検索機能の提供も、顧客基盤の拡大に貢献しています。

財務面では、2028年に77%という高い粗利益率を見込んでいます。これは、巨額のインフラ投資で赤字が続くOpenAIとは対照的です。Anthropicはすでに1700億ドルの評価額を得ており、次回の資金調達では最大4000億ドルを目指す可能性も報じられており、市場の期待は高まるばかりです。

確実性でLLM超え狙うAI、30億円調達

ポストTransformer技術

LLMの言語能力と記号AIの論理推論を融合
ニューロシンボリック方式を採用
確率的なLLMの予測不能性を克服
タスク指向の対話に特化した設計

企業AUIと新モデル

NYの新興企業、評価額1125億円
基盤モデル「Apollo-1」を開発
総調達額は約90億円に到達
2025年末に一般提供を予定

ニューヨークのAIスタートアップ、Augmented Intelligence Inc (AUI)は2025年11月3日、2000万ドル(約30億円)の資金調達を発表しました。これにより企業評価額は7億5000万ドル(約1125億円)に達します。同社は、ChatGPTなどが用いるTransformerアーキテクチャの課題である予測不可能性を克服するため、ニューロシンボリックAI技術を開発。企業が求める確実で信頼性の高い対話AIの実現を目指します。

AUIが開発する基盤モデル「Apollo-1」の核心は、そのハイブリッドな構造にあります。ユーザーの言葉を理解する「ニューラルモジュール」と、タスクの論理構造を解釈し、次に取るべき行動を決定論的に判断する「シンボリック推論エンジン」を分離。これにより、LLMの持つ言語の流暢さと、従来型AIの持つ厳密な論理実行能力を両立させています。

なぜ今、この技術が注目されるのでしょうか。既存のLLMは確率的に応答を生成するため、常に同じ結果を保証できません。これは、金融やヘルスケア顧客サービスなど、厳格なルール遵守が求められる業界では大きな障壁となります。Apollo-1は、組織のポリシーを確実に適用し、タスクを最後まで間違いなく遂行する能力でこの課題を解決します。

Apollo-1の強みは、その汎用性と導入のしやすさにもあります。特定の業界に特化せず、ヘルスケアから小売まで幅広い分野で応用可能です。また、特別なインフラを必要とせず、標準的なクラウド環境で動作するため、導入コストを抑えられる点も企業にとっては魅力的です。開発者は使い慣れたAPI経由で簡単に統合できます。

今回の調達は、より大規模な資金調達の前段階と位置付けられており、同社への期待の高さをうかがわせます。Fortune 500企業の一部では既にベータ版が利用されており、2025年末までの一般公開が予定されています。LLM一強の時代から、用途に応じた多様なAIが選択される新時代への転換点となるかもしれません。

OpenAI、1兆ドルIPO観測も巨額損失の課題

1兆ドルIPOの観測

1兆ドル規模のIPO準備との報道
非公開市場での評価額5000億ドル
会社側は「IPOは焦点でない」と否定

深刻化する財務状況

年末までの収益見込みは200億ドル
四半期損失は115億ドルと推定
年間収益見込みの半分超の赤字

マイクロソフトとの関係

組織再編で依存度を低減
マイクロソフトの出資比率は約27%

生成AI「ChatGPT」を開発するOpenAIが、企業価値1兆ドル(約150兆円)規模の新規株式公開(IPO)を視野に入れていると報じられました。しかしその裏で、同社の四半期損失が約115億ドル(約1.7兆円)に達する可能性が浮上。急成長を支える巨額の先行投資が財務を圧迫しており、AIビジネスの持続可能性が問われています。

損失の規模は、大株主であるマイクロソフトが29日に発表した決算報告から明らかになりました。同社はOpenAIの損失により純利益が31億ドル押し下げられたと報告。マイクロソフトの出資比率(約27%)から逆算すると、OpenAIの7-9月期の損失は約115億ドルに上ると推定されます。これは年間収益見込み200億ドルの半分を超える衝撃的な赤字額です。

一部報道では、OpenAIが大型IPOの準備を進めているとされています。非公開市場での評価額は約5000億ドルとされており、IPOが実現すればその価値は倍増する可能性があります。しかし、OpenAIの広報担当者は「IPOは我々の焦点ではない」とコメントしており、公式には慎重な姿勢を崩していません。

同社は10月28日、マイクロソフトへの依存度を減らすための組織再編を完了したと発表しました。新体制では、非営利団体「OpenAI Foundation」が経営を監督します。マイクロソフトは依然として約27%を保有する筆頭株主であり、両社の協力関係は今後も事業の鍵を握ることになりそうです。

今回の報道は、生成AI開発における莫大なコストと収益化の難しさを改めて浮き彫りにしました。OpenAIは、マイクロソフトソフトバンクなど多くの投資家から期待を集めています。同社が巨額の赤字を乗り越え、持続的な成長軌道に乗れるのか。その動向は、AI業界全体の未来を占う試金石となるでしょう。

Nvidia、AI開発基盤に最大10億ドル投資か

Nvidiaの巨額投資

投資先はAI開発基盤Poolside
投資額は最大10億ドル(約1500億円)
評価額120億ドルでの資金調達
2024年10月に続く追加投資

加速するAI投資戦略

自動運転や競合にも投資実績
AIエコシステムでの覇権強化

半導体大手のNvidiaが、AIソフトウェア開発プラットフォームを手がけるPoolsideに対し、最大10億ドル(約1500億円)の巨額投資を検討していると報じられました。この動きは、AIチップで市場を席巻するNvidiaが、ソフトウェア開発の領域でも影響力を強化し、自社のエコシステムを拡大する戦略の一環とみられます。急成長するAI開発ツール市場の主導権争いが、さらに激化する可能性があります。

米ブルームバーグの報道によると、今回の投資はPoolsideが実施中の総額20億ドル資金調達ラウンドの一部です。同社の評価額120億ドルに達するとされ、Nvidiaは最低でも5億ドルを出資する見込みです。Poolsideが資金調達を成功裏に完了した場合、Nvidiaの出資額は最大で10億ドルに膨らむ可能性があると伝えられています。

NvidiaがPoolsideに出資するのは、今回が初めてではありません。同社は2024年10月に行われたPoolsideのシリーズBラウンド(総額5億ドル)にも参加しており、以前からその技術力を高く評価していました。今回の追加投資は、両社の関係をさらに深め、ソフトウェア開発におけるAIモデルの活用を加速させる狙いがあると考えられます。

Nvidia投資先は多岐にわたります。最近では、英国の自動運転技術企業Wayveへの5億ドルの投資検討や、競合であるIntelへの50億ドル規模の出資も明らかになっています。ハードウェアの強みを活かしつつ、多様なAI関連企業へ投資することで、業界全体にまたがる巨大な経済圏を築こうとする戦略が鮮明になっています。

半導体という「インフラ」で圧倒的な地位を築いたNvidia。その次の一手は、AIが実際に使われる「アプリケーション」層への進出です。今回の投資は、開発者コミュニティを押さえ、ソフトウェアレイヤーでも覇権を握ろうとする野心の表れと言えるでしょう。AI業界のリーダーやエンジニアにとって、Nvidiaの動向はますます見逃せないものとなっています。

AI開発、元社員から「頭脳」を買う新潮流

Mercorの事業モデル

AI企業と業界専門家をマッチング
元上級社員の知識をデータ化
専門家時給最大200ドル支払い
企業が非公開の業務知見を入手

市場へのインパクト

設立3年で評価額100億ドル
OpenAIMeta主要顧客
既存企業の情報流出リスク
新たなギグエコノミーの創出

AI開発の最前線で、新たなデータ収集手法が注目されています。スタートアップMercor社は、OpenAIMetaなどの大手AI企業に対し、投資銀行や法律事務所といった企業の元上級社員を仲介。彼らの頭脳にある専門知識や業務フローをAIの訓練データとして提供するビジネスで急成長を遂げています。これは企業が共有したがらない貴重な情報を得るための画期的な手法です。

Mercorが運営するのは、業界の専門家とAI開発企業を繋ぐマーケットプレイスです。元社員はMercorに登録し、AIモデルの訓練用に特定のフォーム入力やレポート作成を行うことで、時給最大200ドルの報酬を得ます。これによりAI企業は、通常アクセスできない、特定業界のリアルな業務知識に基づいた高品質なデータを手に入れることができるのです。

なぜこのモデルは成功しているのでしょうか。多くの企業は、自社の競争力の源泉である業務プロセスやデータを、それを自動化しうるAI企業に渡すことをためらいます。Mercorはこの「データのジレンマ」を解決しました。企業から直接ではなく、その組織で働いていた個人の知識を活用することで、AI開発に必要な情報を引き出しているのです。

設立からわずか3年弱で、Mercorの年間経常収益は約5億ドル(約750億円)に達し、企業評価額は100億ドル(約1.5兆円)にまで急騰しました。顧客にはOpenAIAnthropicMetaといった名だたるAI企業が名を連ねており、同社がAI開発競争においていかに重要な役割を担っているかがうかがえます。

この手法には、企業秘密の流出という大きなリスクも伴います。元従業員が機密情報を漏らす「企業スパイ」行為にあたる可能性が指摘されていますが、同社のブレンダン・フーディCEOは「従業員の頭の中の知識は、企業ではなく個人のもの」と主張。ただし、情報管理の難しさは認めており、議論を呼んでいます。

Mercorは今後、金融や法律だけでなく、医療など他の専門分野へも事業を拡大する計画です。フーディCEOは「いずれAIは最高のコンサルタントや弁護士を超える」と語り、自社のサービスが経済を根本から変革し、社会全体に豊かさをもたらす力になるとの自信を示しています。専門知識のあり方が問われる時代の到来です。

AI訓練のMercor、評価額5倍の100億ドルに

驚異的な企業価値

評価額100億ドルに到達
前回の評価額から5倍に急増
シリーズCで3.5億ドルを調達

独自のビジネスモデル

AI訓練向けドメイン専門家を提供

今後の成長戦略

人材ネットワークのさらなる拡大
マッチングシステムの高度化

AIモデルの訓練に専門家を提供するMercor社が、シリーズCラウンドで3.5億ドルの資金調達を実施し、企業評価額が100億ドルに達したことを発表しました。この評価額は2月の前回ラウンドからわずか8ヶ月で5倍に急増しており、AI業界の旺盛な需要を象徴しています。今回のラウンドも、既存投資家のFelicis Venturesが主導しました。

同社の強みは、科学者や医師、弁護士といった高度な専門知識を持つ人材をAI開発企業に繋ぐ独自のビジネスモデルにあります。これらの専門家が、人間のフィードバックを反映させる強化学習(RLHF)などを担うことで、AIモデルの精度と信頼性を飛躍的に向上させています。

この急成長の背景には、OpenAIなどの大手AIラボが、データラベリングで競合するScale AIとの関係を縮小したことがあります。Mercor社はこの市場機会を捉え、代替サービスとして急速にシェアを拡大。年間経常収益(ARR)は5億ドル達成が目前に迫る勢いです。

現在、Mercor社のプラットフォームには3万人を超える専門家が登録しており、その平均時給は85ドル以上にのぼります。同社は契約する専門家に対し、1日あたり総額150万ドル以上を支払っていると公表しており、その事業規模の大きさがうかがえます。

今回調達した資金は、主に3つの分野に投じられます。①人材ネットワークのさらなる拡大、②クライアントと専門家を繋ぐマッチングシステムの改善、そして③社内プロセスを自動化する新製品の開発です。AI開発の高度化に伴い、同社の役割はますます重要になるでしょう。

AI基盤Fal.ai、企業価値40億ドル超で大型調達

企業価値が爆発的に増大

企業価値は40億ドルを突破
わずか3ヶ月で評価額2.7倍
調達額は約2億5000万ドル
著名VCが大型出資を主導

マルチモーダルAI特化

600以上のメディア生成モデルを提供
開発者数は200万人を突破
AdobeやCanvaなどが顧客
動画AIなど高まる需要が追い風

マルチモーダルAIのインフラを提供するスタートアップのFal.aiが、企業価値40億ドル(約6000億円)超で新たな資金調達ラウンドを完了しました。関係者によると、調達額は約2億5000万ドルに上ります。今回のラウンドはKleiner PerkinsSequoia Capitalという著名ベンチャーキャピタルが主導しており、AIインフラ市場の過熱ぶりを象徴しています。

驚くべきはその成長速度です。同社はわずか3ヶ月前に評価額15億ドルでシリーズCを終えたばかりでした。当時、売上高は9500万ドルを超え、プラットフォームを利用する開発者は200万人を突破。1年前の年間経常収益(ARR)1000万ドル、開発者数50万人から爆発的な成長を遂げています。

この急成長の背景には、マルチモーダルAIへの旺盛な需要があります。特に、OpenAIの「Sora」に代表される動画生成AIが消費者の間で絶大な人気を博していることが、Fal.aiのようなインフラ提供企業への追い風となっています。アプリケーションの需要が、それを支える基盤技術の価値を直接押し上げているのです。

Fal.aiは開発者向けに、画像動画音声、3Dなど600種類以上のAIモデルを提供しています。数千基のNVIDIA製H100およびH200 GPUを保有し、高速な推論処理に最適化されたクラウド基盤が強みです。API経由のアクセスやサーバーレスでの提供など、柔軟な利用形態も支持されています。

MicrosoftGoogleなど巨大IT企業もAIホスティングサービスを提供していますが、Fal.aiはメディアとマルチモーダルに特化している点が競争優位性です。顧客にはAdobe、Canva、Perplexity、Shopifyといった大手企業が名を連ね、広告、Eコマース、ゲームなどのコンテンツ制作で広く活用されています。

同社は2021年、Coinbaseで機械学習を率いたBurkay Gur氏と、Amazon出身のGorkem Yurtseven氏によって共同設立されました。多くの技術者が大規模言語モデル(LLM)開発に走る中、彼らはマルチメディア生成の高速化と大規模化にいち早く着目し、今日の成功を収めました。

LangChain、評価額1900億円でユニコーン入り

驚異的な成長スピード

2022年にOSSとして始動
23年4月にシードで1000万ドル調達
1週間後にシリーズAで2500万ドル調達
評価額1年半で6倍以上

AIエージェント開発基盤

LLMアプリ開発の課題を解決
Web検索やDB連携を容易に
GitHubスターは11.8万超
エージェント構築基盤へと進化

AIエージェント開発のオープンソース(OSS)フレームワークを提供するLangChainが10月21日、1億2500万ドル(約187億円)の資金調達を発表しました。これにより、同社の評価額は12億5000万ドル(約1900億円)に達し、ユニコーン企業の仲間入りを果たしました。今回のラウンドはIVPが主導し、新たにCapitalGやSapphire Venturesも参加。AIエージェント構築プラットフォームとしての進化を加速させます。

同社の成長は驚異的です。2022年にOSSプロジェクトとして始まった後、2023年4月にBenchmark主導で1000万ドルのシードラウンドを、そのわずか1週間後にはSequoia主導で2500万ドルのシリーズAラウンドを完了。当時2億ドルと報じられた評価額は、わずか1年半余りで6倍以上に跳ね上がったことになります。

LangChainは、初期の大規模言語モデル(LLM)を用いたアプリ開発における課題を解決し、一躍注目を集めました。Web検索、API呼び出し、データベースとの対話といった、LLMが単体では不得手な処理を容易にするフレームワークを提供。開発者から絶大な支持を得ており、GitHubでのスター数は11.8万を超えています。

最先端のモデルメーカーがインフラ機能を強化する中で、LangChainも単なるツールからプラットフォームへと進化を遂げています。今回の発表に合わせ、エージェントビルダーの「LangChain」やオーケストレーションツール「LangGraph」など主要製品のアップデートも公開。AIエージェント開発のハブとしての地位を確固たるものにしています。

医療AI「OpenEvidence」評価額9000億円で2億ドル調達

急成長する医療AI

評価額9000億円で2億ドル調達
わずか3ヶ月で評価額が倍増
月間臨床相談件数は1500万件
認証済み医療従事者は無料利用

仕組みと有力投資家

有名医学雑誌でAIを訓練
医師の迅速な情報検索を支援
リード投資家Google Ventures
Sequoiaなど有力VCも参加

「医師向けChatGPT」として知られる医療AIスタートアップのOpenEvidenceが、新たに2億ドル(約300億円)の資金調達を実施したことが報じられました。企業評価額60億ドル(約9000億円)に達し、わずか3ヶ月前のラウンドから倍増。Google Venturesが主導したこの調達は、医療など特定分野に特化したAIへの市場の強い期待を浮き彫りにしています。

OpenEvidenceの成長速度は驚異的です。前回、7月に2.1億ドルを調達した際の評価額は35億ドルでした。そこからわずか3ヶ月で評価額を1.7倍以上に引き上げたことになります。背景にはユーザー数の急増があり、月間の臨床相談件数は7月の約2倍となる1500万件に達しています。急速なスケールが投資家の高い評価につながりました。

同社のプラットフォームは、権威ある医学雑誌の膨大なデータで訓練されたAIを活用しています。医師や看護師が患者の治療方針を検討する際、関連する医学知識を瞬時に検索し、信頼性の高い回答を得ることを支援します。特筆すべきは、認証された医療専門家であれば、広告モデルにより無料で利用できる点です。これにより、導入のハードルを下げ、普及を加速させています。

今回の資金調達は、Google投資部門であるGoogle Venturesが主導しました。さらに、セコイア・キャピタルやクライナー・パーキンスといったシリコンバレーの著名ベンチャーキャピタルも参加。この豪華な投資家陣は、OpenEvidenceが持つ技術力と、医療業界のDX(デジタルトランスフォーメーション)を牽引する将来性を高く評価している証左と言えるでしょう。

OpenEvidenceの事例は、汎用的な大規模言語モデルから、特定の業界課題を解決する「特化型AI」へと市場の関心が移っていることを示唆しています。自社のビジネス領域で、どのようにAIを活用し生産性や付加価値を高めるか。経営者エンジニアにとって、そのヒントがこの急成長企業の戦略に隠されているのではないでしょうか。

保険業務をAIで刷新、Liberateが75億円調達

AIエージェントの提供価値

売上15%増、コスト23%削減を実現
請求対応時間を30時間から30秒に短縮
24時間365日の販売・顧客対応
既存システムと連携し業務を自動化

大型資金調達の概要

シリーズBで5000万ドルを調達
企業評価額3億ドル(約450億円)
AIの推論能力向上と事業拡大に投資
Battery Venturesがラウンドを主導

AIスタートアップのLiberate社が、シリーズBラウンドで5000万ドル(約75億円)を調達したと発表しました。企業評価額は3億ドル(約450億円)に達します。同社は音声AIと推論ベースのAIエージェントを組み合わせ、保険の販売から請求処理までのバックオフィス業務を自動化するシステムを開発。運営コストの増大や旧式システムに悩む保険業界の課題解決を目指します。

Liberateの技術の核心は、エンドツーエンドで業務を完遂するAIエージェントです。顧客対応の最前線では音声AIアシスタント「Nicole」が電話応対し、その裏でAIエージェント群が既存の保険システムと連携。見積もり作成、契約更新、保険金請求処理といった定型業務を人の介在なしに実行します。

導入効果は既に数字で示されています。顧客企業は平均で売上が15%増加し、運用コストを23%削減することに成功。ある事例では、ハリケーン関連の保険金請求対応にかかる時間が従来の30時間からわずか30秒へと劇的に短縮されました。人間の担当者が不在の時間帯でも販売機会を逃しません。

高い性能と信頼性を両立させる仕組みも特徴です。AIは規制の厳しい保険業界の対話に特化した強化学習で訓練されています。さらに「Supervisor」と呼ばれる独自ツールがAIと顧客の全やり取りを監視。AIの応答が不適切と判断された場合は、即座に人間の担当者にエスカレーションする安全装置も備えています。

今回の資金調達は、著名VCのBattery Venturesが主導しました。投資家は、Liberateの技術を「単に対話するだけでなく、システムと連携してタスクを最後までやり遂げる能力」と高く評価。多くの保険会社が本格的なDXへと舵を切る中、同社の存在感はますます高まっています。

Liberateは調達した資金を、AIの推論能力のさらなる向上と、グローバルな事業展開の加速に充てる計画です。創業3年の急成長企業が、伝統的な保険業界の生産性と収益性をいかに変革していくか、市場の注目が集まります。

ヒューマノイド投資に警鐘、実用化への高い壁

立ちはだかる技術的な壁

人間の手のような器用さの習得
60自由度を超える複雑なシステム制御
デモはまだ遠隔操作の段階も

市場と安全性の現実

人間と共存する際の安全確保が課題
宇宙など限定的なユースケース
VCが懸念する不透明な開発計画

iRobot創業者のロドニー・ブルックス氏をはじめとする複数の専門家が、ヒューマノイドロボット分野への過熱投資に警鐘を鳴らしています。巨額の資金が投じられる一方、人間の手のような「器用さ」の欠如や安全性の懸念から、実用化はまだ遠いとの見方が大勢です。広範な普及には、少なくとも数年から10年以上かかると予測されています。

最大の課題は、人間の手のような繊細な動き、すなわち「器用さ」の習得です。ブルックス氏は、現在の技術ではロボットがこの能力を学習することは極めて困難であり、これができなければ実質的に役に立たないと指摘します。多くのデモは華やかに見えますが、実用レベルには達していないのが現状です。

人間と共存する上での安全性も大きな障壁です。ロボティクス専門のベンチャーキャピタルは、工場や家庭内でヒューマノイドが人に危害を加えるリスクを懸念しています。ロボットの転倒による事故や、ハッキングされて予期せぬ行動を取る危険性など、解決すべき課題は山積しています。

開発のタイムラインも不透明です。Nvidiaの研究者は、ヒューマノイド開発の現状をかつての自動運転車の熱狂になぞらえています。実用化までには想定以上に長い年月を要する可能性があり、これは投資家の回収サイクルとも合致しにくく、ビジネスとしての持続可能性に疑問を投げかけています。

期待の大きいテスラの「Optimus」でさえ、開発は遅れ、最近のデモでは人間が遠隔操作していたことが明らかになりました。高い評価額を受けるスタートアップFigureも、実際の配備数については懐疑的な目が向けられており、期待と現実のギャップが浮き彫りになっています。

もちろん、専門家ヒューマノイドの未来を完全に否定しているわけではありません。しかし、その登場は10年以上先であり、形状も人型ではなく車輪を持つなど、より実用的な形になる可能性が指摘されています。現在の投資ブームは、技術の成熟度を見誤っているのかもしれません。

Supabase、評価額7500億円到達。AI開発で急成長

驚異的な成長スピード

シリーズEで1億ドルを調達
企業評価額50億ドルに到達
わずか4ヶ月で評価額2.5倍
過去1年で3.8億ドルを調達

AI開発を支える基盤

FirebaseのOSS代替として誕生
自然言語開発で人気が沸騰
FigmaやReplitなど大手も採用
400万人開発者コミュニティ

オープンソースのデータベースサービスを提供するSupabaseは10月3日、シリーズEラウンドで1億ドル(約150億円)を調達したと発表しました。これにより企業評価額は50億ドル(約7500億円)に達しました。本ラウンドはAccelとPeak XVが主導。自然言語でアプリを開発する「vibe-coding」の流行を背景に、AI開発基盤としての需要が急拡大しています。

同社の成長ペースは驚異的です。わずか4ヶ月前に評価額20億ドルでシリーズDを完了したばかりで、評価額2.5倍に急増しました。過去1年間で調達した資金は3億8000万ドルに上り、企業評価額は推定で500%以上も上昇。累計調達額は5億ドルに達しています。

Supabaseは2020年創業のスタートアップで、元々はGoogleのFirebaseに代わるPostgreSQLベースのオープンソース代替サービスとして開発されました。データベース設定の複雑な部分を数クリックに簡略化し、認証やAPI自動生成、ファイルストレージなどの機能も提供します。

急成長の背景には、AIアプリ開発、特に「vibe-coding」と呼ばれる自然言語プログラミングの隆盛があります。Figma、Replit、Cursorといった最先端のAIコーディングツールが相次いで同社のデータベースを採用しており、開発者の間で確固たる地位を築きつつあります。

Supabaseの強みは、400万人の開発者が参加する活発なオープンソースコミュニティです。同社はこのコミュニティとの連携を重視しており、今回の資金調達では、コミュニティメンバーにも株式を購入する機会を提供するという異例の取り組みも発表しました。

AIの雄ナヴィーン・ラオ氏、新会社でNvidiaに挑戦

新会社の野心的な構想

社名はUnconventional社
AI向け新型コンピュータ開発
カスタム半導体とサーバー基盤
目標は生物学レベルの効率性

異例の巨額資金調達

評価額50億ドル目標
調達目標額は10億ドル
a16zがリード投資家
古巣Databricksも出資

米Databricksの元AI責任者ナヴィーン・ラオ氏が、新会社「Unconventional」を設立し、AIハードウェア市場の巨人Nvidiaに挑みます。同社は、50億ドル(約7500億円)の評価額で10億ドル(約1500億円)の資金調達を目指しており、著名VCのAndreessen Horowitz (a16z)が投資を主導すると報じられました。AIの計算基盤そのものを再定義する壮大な挑戦が始まります。

ラオ氏が目指すのは、単なる半導体開発ではありません。彼がX(旧Twitter)で語ったビジョンは「知性のための新しい基盤」。生物学と同等の効率性を持つコンピュータを、カスタム半導体とサーバーインフラを統合して作り上げる計画です。これは、現在のAI開発における計算コストとエネルギー消費の課題に対する根本的な解決策となり得るでしょうか。

この挑戦を支えるため、シリコンバレーのトップ投資家が集結しています。リード投資家a16zに加え、Lightspeed、Lux Capitalといった有力VCが参加。さらに、ラオ氏の古巣であるDatabricksも出資者に名を連ねており、業界からの高い期待が伺えます。すでに数億ドルを確保し、10億ドルの調達完了を待たずに開発に着手するとのことです。

ラオ氏は、これまでにも2社のスタートアップを成功に導いた実績を持つ連続起業家です。AIモデル開発の「MosaicML」は2023年にDatabricksが13億ドルで買収。それ以前に創業した「Nervana Systems」は2016年にIntelが4億ドル超で買収しました。彼の持つ技術力と事業構想力が、今回も大きな成功を生むのか注目が集まります。

生成AIの爆発的な普及により、その頭脳であるAI半導体の需要は急増しています。市場をほぼ独占するNvidia一強体制に対し、Unconventional社の挑戦が風穴を開けることができるのか。AIインフラの未来を占う上で、同社の動向から目が離せません。

OpenAI、評価額5000億ドルで世界首位の未公開企業に

驚異的な企業価値

従業員保有株の売却で価値急騰
評価額5000億ドル(約75兆円)
未公開企業として史上最高額を記録

人材獲得競争と資金力

Metaなどへの人材流出に対抗
従業員への強力なリテンション策
ソフトバンクなど大手投資家が購入

巨額投資と事業拡大

インフラ投資計画を資金力で支える
最新動画モデル「Sora 2」も発表

AI開発のOpenAIが10月2日、従業員らが保有する株式の売却を完了し、企業評価額が5000億ドル(約75兆円)に達したことが明らかになりました。これは未公開企業として史上最高額であり、同社が世界で最も価値のあるスタートアップになったことを意味します。この株式売却は、大手テック企業との熾烈な人材獲得競争が背景にあります。

今回の株式売却は、OpenAI本体への資金調達ではなく、従業員や元従業員が保有する66億ドル相当の株式を現金化する機会を提供するものです。Meta社などが高額な報酬でOpenAIのトップエンジニアを引き抜く中、この動きは優秀な人材を維持するための強力なリテンション策として機能します。

株式の購入者には、ソフトバンクやThrive Capital、T. Rowe Priceといった著名な投資家が名を連ねています。同社は8月にも評価額3000億ドルで資金調達を完了したばかりであり、投資家からの絶大な信頼と期待が、その驚異的な成長を支えていると言えるでしょう。

OpenAIは、今後5年間でOracleクラウドサービスに3000億ドルを投じるなど、野心的なインフラ計画を進めています。今回の評価額の高騰は、こうした巨額投資を正当化し、Nvidiaからの1000億ドル投資計画など、さらなる戦略的提携を加速させる要因となりそうです。

同社は最新の動画生成モデル「Sora 2」を発表するなど、製品開発の手を緩めていません。マイクロソフトとの合意による営利企業への転換も視野に入れており、その圧倒的な資金力と開発力で、AI業界の覇権をさらに強固なものにしていくと見られます。

元OpenAIムラティ氏、AI調整ツールTinker公開

元OpenAI幹部の新挑戦

ミラ・ムラティ氏が新会社を設立
初製品はAIモデル調整ツールTinker
評価額120億ドルの大型スタートアップ

TinkerでAI開発を民主化

専門的な調整作業をAPIで自動化
強化学習でモデルの新たな能力を開拓
調整済みモデルはダウンロードして自由に利用可

OpenAIの最高技術責任者(CTO)であったミラ・ムラティ氏が共同設立した新興企業「Thinking Machines Lab」は2025年10月1日、初の製品となるAIモデル調整ツール「Tinker」を発表しました。このツールは、最先端AIモデルのカスタマイズ(ファインチューニング)を自動化し、より多くの開発者や研究者が高度なAI技術を利用できるようにすることを目的としています。

「Tinker」は、これまで専門知識と多大な計算資源を要したモデルのファインチューニング作業を大幅に簡略化します。GPUクラスタの管理や大規模な学習プロセスの安定化といった複雑な作業を自動化し、ユーザーはAPIを通じて数行のコードを記述するだけで、独自のAIモデルを作成できるようになります。

特に注目されるのが、強化学習(RL)の活用です。共同創業者ChatGPT開発にも関わったジョン・シュルマン氏が主導するこの技術により、人間のフィードバックを通じてモデルの対話能力や問題解決能力を飛躍的に向上させることが可能です。Tinkerは、この「秘伝のタレ」とも言える技術を開発者に提供します。

Thinking Machines Labには、ムラティ氏をはじめOpenAIの元共同創業者や研究担当副社長など、トップレベルの人材が集結しています。同社は製品発表前にすでに20億ドルのシード資金を調達し、評価額は120億ドルに達するなど、業界から極めて高い期待が寄せられています。

現在、TinkerはMeta社の「Llama」やAlibaba社の「Qwen」といったオープンソースモデルに対応しています。大手テック企業がモデルを非公開にする傾向が強まる中、同社はオープンなアプローチを推進することで、AI研究のさらなる発展と民主化を目指す考えです。これにより、イノベーションの加速が期待されます。

AIチップCerebras、IPO計画遅延も11億ドル調達

大型資金調達の概要

Nvidiaのライバルが11億ドルを調達
企業評価額81億ドルに到達
Fidelityなどがラウンドを主導
累計調達額は約20億ドル

成長戦略とIPOの行方

AI推論サービスの需要が急拡大
資金使途はデータセンター拡張
米国製造拠点の強化も推進
規制審査でIPOは遅延、時期未定

NVIDIAの競合である米Cerebras Systemsは9月30日、11億ドルの資金調達を発表しました。IPO計画が遅延する中、急拡大するAI推論サービスの需要に対応するため、データセンター拡張などに資金を充当します。

今回のラウンドはFidelityなどが主導し、企業評価額81億ドルと評価されました。2021年の前回ラウンドから倍増です。2015年設立の同社は、累計調達額が約20億ドルに達し、AIハードウェア市場での存在感を一層高めています。

資金調達の背景は「推論」市場の爆発的成長です。2024年に開始したAI推論クラウドは需要が殺到。アンドリュー・フェルドマンCEOは「AIが実用的になる転換点を越え、推論需要が爆発すると確信した」と語り、事業拡大を急ぎます。

調達資金の主な使途はインフラ増強です。2025年だけで米国内に5つの新データセンターを開設。今後はカナダや欧州にも拠点を広げる計画です。米国内の製造ハブ強化と合わせ、急増する需要に対応する供給体制を構築します。

一方で、同社のIPO計画は足踏み状態が続いています。1年前にIPOを申請したものの、アブダビのAI企業G42からの投資米国外国投資委員会(CFIUS)の審査対象となり、手続きが遅延。フェルドマンCEOは「我々の目標は公開企業になることだ」と述べ、IPOへの意欲は変わらないことを強調しています。

今回の大型調達は、公開市場の投資家が主導する「プレIPOラウンド」の性格を帯びており、市場環境を見極めながら最適なタイミングで上場を目指す戦略とみられます。AIインフラ競争が激化する中、Cerebrasの今後の動向が注目されます。

Vibe-codingのAnything、評価額150億円で資金調達

驚異的な初期成長

ローンチ後2週間でARR200万ドル達成
シリーズAで1100万ドルを調達
企業評価額1億ドル(約150億円)

勝因は「オールインワン」

プロトタイプを超えた本番用アプリ開発
DBや決済などインフラも内製で提供
非技術者でも収益化可能なアプリ構築
目標は「アプリ開発界のShopify

AIでアプリを開発する「Vibe-coding」分野のスタートアップAnything社は29日、1100万ドル(約16.5億円)の資金調達を発表しました。企業評価額は1億ドル(約150億円)に達します。同社はローンチ後わずか2週間で年間経常収益(ARR)200万ドルを達成。インフラまで内包する「オールインワン」戦略投資家から高く評価された形です。

自然言語でアプリを構築するVibe-coding市場は、驚異的な速さで成長しています。しかし、先行する多くのツールはプロトタイプの作成には優れているものの、実際にビジネスとして通用する本番環境向けのソフトウェア開発には課題がありました。データベースや決済機能といったインフラを別途用意する必要があり、非技術者にとって大きな障壁となっていたのです。

この課題に対し、Anythingは根本的な解決策を提示します。元Googleエンジニアが創業した同社は、データベース、ストレージ、決済機能といったアプリの運用に必要な全てのツールを内製し、一括で提供します。これによりユーザーは、インフラの複雑な設定に悩むことなく、アイデアの実現と収益化に集中できます。

Anythingの共同創業者であるDhruv Amin氏は「我々は、人々が我々のプラットフォーム上でお金を稼ぐアプリを作る、『アプリ開発界のShopify』になりたい」と語ります。実際に、同社のツールを使って開発されたアプリがApp Storeで公開され、すでに収益を上げ始めています。この実績が、同社の急成長を裏付けていると言えるでしょう。

もちろん、Anythingが唯一のプレイヤーではありません。同様にインフラの内製化を進める競合も存在し、市場の競争は激化しています。しかし、投資家は「多様なアプリ開発製品に対する需要は十分にある」と見ており、市場全体の拡大が期待されます。非技術者によるアプリ開発の民主化は、まだ始まったばかりなのかもしれません。

AIエージェント性能向上へ、強化学習『環境』に投資が集中

シリコンバレーで、自律的にタスクをこなすAIエージェントの性能向上を目指し、強化学習(RL)で用いるシミュレーション「環境」への投資が急増しています。大手AIラボから新興企業までが開発に注力しており、次世代AI開発の鍵を握る重要技術と見なされています。従来の静的データセットによる学習手法の限界が背景にあります。 では、RL環境とは何でしょうか。これはAIがソフトウェア操作などを模擬した仮想空間で訓練を行うためのものです。例えばブラウザで商品を購入するタスクをシミュレートし、成功すると報酬を与えます。これにより、エージェントは試行錯誤を通じて実践的な能力を高めるのです。 この分野への需要は急拡大しており、大手AIラボはこぞって社内でRL環境を構築しています。The Informationによれば、Anthropicは来年RL環境に10億ドル以上を費やすことを検討しており、業界全体の投資熱の高さを示しています。AI開発競争の新たな主戦場となりつつあります。 この好機を捉え、RL環境に特化した新興企業も登場しています。Mechanize社はAIコーディングエージェント向けの高度な環境を提供。Prime Intellect社はオープンソース開発者向けのハブを立ち上げ、より幅広い開発者が利用できるインフラ構築を目指しています。 データラベリング大手もこの市場シフトに対応しています。Surge社は需要増を受け、RL環境構築専門の組織を設立。評価額100億ドルとされるMercor社も同様に投資を強化し、既存の顧客基盤を活かして市場での地位を固めようとしています。 ただし、この手法の有効性には懐疑的な見方もあります。専門家は、AIが目的を達成せずに報酬だけを得ようとする「報酬ハッキング」のリスクを指摘。AI研究の進化は速く、開発した環境がすぐに陳腐化する懸念もあります。スケーラビリティへの課題も残り、今後の進展が注目されます。

Nvidia追撃のGroqが7.5億ドル調達 AI推論特化LPUで69億ドル評価へ

資金調達と企業価値

新規調達額は7.5億ドルを達成
ポストマネー評価額69億ドルに到達
1年間で評価額2.8倍に急伸
累計調達額は30億ドル超と推定

技術的優位性

NvidiaGPUに挑む独自チップLPUを採用
AIモデル実行(推論)特化の高性能エンジン
迅速性、効率性、低コストを実現
開発者200万人超が利用、市場浸透が加速

AIチップベンチャーのGroqは先日、7億5000万ドルの新規資金調達を完了し、ポストマネー評価額69億ドル(約1兆円)に到達したと発表しました。これは当初予想されていた額を上回る結果です。同社は、AIチップ市場を支配するNvidiaGPUに対抗する存在として、推論特化の高性能なLPU(言語処理ユニット)を提供しており、投資家の高い関心を集めています。

Groqの核となるのは、従来のGPUとは異なる独自アーキテクチャのLPUです。これは、AIモデルを実際に実行する「推論(Inference)」に特化して最適化されており、推論エンジンと呼ばれます。この設計により、Groqは競合製品と比較して、AIパフォーマンスを維持または向上させつつ、大幅な低コストと高効率を実現しています。

Groqの技術は開発者や企業向けに急速に浸透しています。利用する開発者の数は、わずか1年で35万6000人から200万人以上へと急増しました。製品はクラウドサービスとして利用できるほか、オンプレミスのハードウェアクラスターとしても提供され、企業の多様なニーズに対応できる柔軟性も強みです。

今回の調達額は7.5億ドルですが、注目すべきはその評価額の伸びです。Groq評価額は、2024年8月の前回の資金調達時(28億ドル)からわずか約1年で2.8倍以上に膨らみました。累計調達額は30億ドルを超えると推定されており、AIインフラ市場における同社の将来性に、DisruptiveやBlackRockなどの大手が確信を示しています。

創業者のジョナサン・ロス氏は、GoogleTensor Processing Unit(TPU)の開発に携わっていた経歴を持ちます。TPUGoogle CloudのAIサービスを支える専門プロセッサであり、ロス氏のディープラーニング向けチップ設計における豊富な経験が、Groq独自のLPU開発の基盤となっています。

最先端AIセキュリティのIrregular、8000万ドル調達しリスク評価強化

巨額調達と評価額

調達額は8,000万ドルに到達
評価額4.5億ドルに急伸
Sequoia CapitalやRedpoint Venturesが主導

事業の核心と評価手法

対象は最先端(フロンティア)AIモデル
AI間の攻撃・防御シミュレーションを実施
未発見の潜在的リスクを事前に検出
独自の脆弱性評価フレームワーク「SOLVE」を活用
OpenAIClaudeの評価実績を保有

AIセキュリティ企業Irregular(旧Pattern Labs)は、Sequoia Capitalなどが主導するラウンドで8,000万ドルの資金調達を発表しました。企業価値は4.5億ドルに達し、最先端AIモデルが持つ潜在的なリスクと挙動を事前に検出・評価する事業を強化します。

共同創業者は、今後の経済活動は人間対AI、さらにはAI対AIの相互作用が主流になり、従来のセキュリティ対策では対応できなくなると指摘しています。これにより、モデルリリース前に新たな脅威を見つける必要性が高まっています。

Irregularが重視するのは、複雑なシミュレーション環境を構築した集中的なストレス試験です。ここではAIが攻撃者と防御者の両方の役割を担い、防御が崩壊する箇所を徹底的に洗い出します。これにより、予期せぬ挙動を事前に発見します。

同社はすでにAI評価分野で実績を築いています。OpenAIのo3やo4-mini、Claude 3.7 Sonnetなどの主要モデルのセキュリティ評価に採用されています。また、脆弱性検出能力を測る評価フレームワーク「SOLVE」は業界標準として広く活用されています。

AIモデル自体がソフトウェアの脆弱性を見つける能力を急速に高めており、これは攻撃者と防御者の双方にとって重大な意味を持ちます。フロンティアAIの進化に伴い、潜在的な企業スパイ活動など、セキュリティへの注目はますます集中しています。

Nothing社、AI特化OSで市場刷新へ 2億ドル調達し来年デバイス投入

事業拡大と資金調達

2億ドルの資金調達を完了
企業評価額13億ドルに到達
流通網拡大とイノベーション加速
初の「AIネイティブデバイス」を来年投入

AI特化OSの戦略

従来と異なるAI特化のOSを開発
スマートフォンからEV、人型ロボットに対応
ユーザーに合わせた超パーソナライズ体験を実現
コンテキストとユーザー知識の活用を重視

ロンドン発の消費者テック企業Nothing社は、2億ドル(約310億円)の資金調達を発表し、評価額を13億ドルに引き上げました。同社は来年、既存の概念を覆す「AIネイティブデバイス」を市場に投入します。これは、従来のOSとは大きく異なる、AIに特化した新しいオペレーティングシステム(AI OS)を基盤とする戦略です。

このAI OSは、スマートフォンやヘッドホンといった既存の製品群に加え、スマートグラス、電気自動車(EV)、さらには人型ロボットまで、将来登場するあらゆるデバイスの頭脳となることを目指しています。ペイCEOは、この特化型OSを通じて、ユーザー一人ひとりに合わせた「超パーソナライズされた体験」を提供できると強調しています。

ペイCEOは、OS開発における独自の強みとして、コンテキストやユーザー知識を持つ「最後の流通接点(ラストマイル)」を握っている点を挙げます。これにより、単なるツールではない、ユーザーの日常生活に深く入り込み、真に役立つAI体験をハードウェアに統合できると説明しています。

Nothing社の挑戦は、過去に大衆市場の支持を得られなかったAIネイティブデバイスという未開拓の領域です。Appleのような大手企業でさえ成功を収めていない上、OpenAIと元Appleデザイナーのジョニー・アイヴ氏が共同開発する競合製品も存在します。Nothing社にとって、需要を創出し、この新たなカテゴリーを確立できるかが最大の試練となります。

卓上ロボット工場が1.5億円調達、人間実演で精密製造を高速学習

超小型・汎用ロボット工場

犬小屋サイズの卓上製造キット
2本のアームを持つ汎用ロボットシステム
回路基板組立など精密製造タスクに特化

革新的な学習アプローチ

人間の実演によるトレーニングを採用
従来のAIプログラミングより迅速に学習
複雑なシーケンスを数時間で習得可能

資金調達と事業目標

プレシードで150万ドルを調達
創業間もないが3000万ドル評価を獲得

サンフランシスコ拠点のスタートアップ、MicroFactoryが、犬小屋サイズの卓上ロボット工場を開発し、プレシードラウンドで150万ドル(約2.3億円)を調達しました。同社は設立間もないながら、ポストマネー評価額3000万ドル(約46億円)を獲得。このロボットシステムは、人間が物理的に動きを教えることで複雑な精密製造タスクを迅速に学習できる点が革新的です。

MicroFactoryのシステムは、従来の人型や工場全体の自動化を目指すロボットとは一線を画します。製品は透明な筐体に収められた卓上型の製造キットで、2本のアームを持つ汎用ロボットを搭載。CEOのイゴール・クラコフ氏は、人間型である必要はなく、設計をシンプルにすることで、ハードウェアとAIの両面で汎用性を高められると説明しています。

このシステムの最大の特徴は、ユーザーが直接ロボットアームをガイドして動作を教える、「人間による実演(Demonstration)」学習です。従来のAIプログラミングに比べ、複雑な製造シーケンスを数時間で正確に理解させることが可能となります。これは、熟練工を雇用し指導する際に費やす時間とリソースを大幅に削減できることを意味します。

このコンパクトなロボット工場は、特に高い精度が要求されるタスク向けに設計されています。具体的には、回路基板の組立、部品のはんだ付け、ケーブルの配線などです。また、エレクトロニクス製造だけでなく、食用カタツムリの加工など、ニッチな分野での多様な事前予約も獲得しており、その汎用性の高さを示しています。

今回調達した資金は、商業製品への移行とユニットの出荷、そしてAIモデルの継続的な改善に充てられます。MicroFactoryは、ハードウェア製造に焦点を当てた成長目標を掲げており、初年度に1,000台のロボット(1日あたり約3台)を生産する能力があると述べています。今後も毎年10倍の成長を目指す計画です。

AIコードレビュー市場急拡大、CodeRabbitが評価額800億円超で6000万ドル調達

驚異的な成長と評価

シリーズBで6000万ドルを調達
企業評価額5億5000万ドル
ARR1500万ドル超、月次20%成長
NvidiaVC含む有力投資家が参画

サービスと価値

AIコード生成のバグボトルネック解消
コードベース理解に基づく高精度なフィードバック
レビュー担当者を最大半減生産性向上
Grouponなど8,000社以上が採用

AIコードレビュープラットフォームを提供するCodeRabbitは、シリーズBラウンドで6000万ドル(約90億円)を調達し、企業評価額5億5000万ドル(約825億円)としました。設立からわずか2年でこの評価額に達した背景には、GitHub Copilotなどに代表されるAIによるコード生成の普及で、レビュー工程が新たなボトルネックとなっている現状があります。この資金調達はScale Venture Partnersが主導し、NvidiaVC部門も参加しています。

CodeRabbitは、増加するAI生成コードのバグに対処し、開発チームの生産性向上に貢献しています。同社の年間経常収益(ARR)は1500万ドルを超え、月次20%という驚異的な成長率を維持しています。Chegg、Grouponなど8,000社以上の企業が既に導入しており、急速に市場のニーズを取り込んでいることがわかります。

AIによるコード生成は効率を高める一方、その出力はしばしばバグを含み、シニア開発者がその修正に時間を費やす「AIのベビーシッター」状態を生み出しています。CodeRabbitは、企業の既存のコードベース全体を深く理解することで、潜在的なバグを的確に特定し、人間のように具体的なフィードバックを提供します。

創業者であるハージョット・ギル氏によると、CodeRabbitの導入により、企業はコードレビューに携わる人員を最大で半減できる効果が見込めるとしています。これは、開発サイクルにおける最も時間のかかる作業の一つであるコードレビューの効率化をAIが担うことで実現されます。

AIコードレビュー市場では、Graphite(5200万ドル調達)やGreptileなど、有力な競合が存在します。しかし、CodeRabbitAnthropicClaude Codeなどのバンドルソリューションと比較して、より包括的かつ技術的な深みがあると主張し、スタンドアローン製品としての優位性を強調しています。

開発者がAI生成コードに依存する度合いが高まるにつれ、その信頼性を担保するためのAIコードレビューの需要はさらに拡大する見通しです。CodeRabbitが提示する高精度なレビュー機能が、今後のソフトウェア開発における必須インフラとなる可能性を示唆しています。