創薬(産業・業界)に関するニュース一覧

AI脅威論に終止符、科学者が描くべき未来

AIへの広がる懸念

科学界に広まるAIへの悲観論
偽情報や人権侵害など悪用の多発
ビッグテックによる技術支配の強化

未来を拓くAIの善用

言語の壁を越える翻訳技術
創薬や科学研究を加速するAI
民主的プロセスを強化する応用

科学者に求められる行動

倫理的で公平な業界改革の主導
ポジティブな未来像の明確な提示

AIに対する懸念が科学界でも広がる中、専門家リスクを警告するだけでなく、社会に有益な未来像を積極的に描くべきだと提言しています。偽情報や人権問題などの課題を認めつつ、AIには人々の生活を向上させる大きな可能性があると指摘。科学者や技術者がその実現に向け、開発の舵取り役を担うことの重要性を訴えています。

現在、AIが社会問題に拍車をかけているとの見方が強まっています。偽情報の拡散、戦争の高度化、そして膨大なエネルギー消費による環境負荷など、ネガティブな側面が目立ちます。ビッグテックによる技術支配も進み、AIが「あらゆることを悪化させている」という感覚さえ広がっているのです。

この悲観論は科学界も例外ではありません。ある調査では、科学者の間で生成AIの日常利用に対し、期待よりも懸念が3倍近く多いことが示されました。この風潮が続けば、AI開発を善導できるはずの人材が「手遅れだ」と諦め、そのプロセスから離れてしまう恐れはないでしょうか。

では、どうすればこの流れを変えられるのでしょうか。気候変動対策と同様、単にリスクを警告するだけでは不十分です。科学者や技術者は、AIがもたらす有益で具体的な未来像を社会に示し、その実現に向けた行動を促す必要があります。ポジティブなビジョンこそが、人々を動かす原動力となるのです。

AIの善用例は、既に数多く生まれ始めています。少数言語を含むコミュニケーションの壁を取り払い、創薬や基礎科学の研究を加速させ、さらには民主的な政策決定を支援する応用も登場しています。これらの初期段階の取り組みを育て、社会実装を広げていくことが重要です。

科学者にはAIの未来を形作る特権と責任があります。専門家は、倫理的な業界改革、有害利用への抵抗、社会を良くするための責任ある利用、そして制度改革の提唱という4つの行動を呼びかけます。技術の方向性は中立ではなく、私たちの選択次第です。望ましい未来を築くため、今こそ明確なビジョンが求められています。

NVIDIA、AI工場設計図と新半導体を一挙公開

AI工場構築の設計図

政府向けAI工場設計図を公開
ギガワット級施設のデジタルツイン設計
次世代DPU BlueField-4発表
産業用AIプロセッサ IGX Thor

オープンなAI開発

高効率な推論モデルNemotron公開
物理AI基盤モデルCosmosを提供
6G研究用ソフトをオープンソース化

NVIDIAは10月28日、ワシントンD.C.で開催の技術会議GTCで、政府・規制産業向けの「AIファクトリー」参照設計や次世代半導体、オープンソースのAIモデル群を一挙に発表しました。これは、セキュリティが重視される公共分野から創薬エネルギー、通信といった基幹産業まで、AIの社会実装をあらゆる領域で加速させるのが狙いです。ハード、ソフト、設計思想まで網羅した包括的な戦略は、企業のAI導入を新たな段階へと導く可能性があります。

発表の核となるのが、AI導入の設計図です。政府・規制産業向けに高いセキュリティ基準を満たす「AI Factory for Government」を発表。PalantirやLockheed Martinなどと連携します。また、Omniverse DSXブループリントは、ギガワット級データセンターデジタルツインで設計・運用する手法を提示。物理的な建設前に効率や熱問題を最適化し、迅速なAIインフラ構築を可能にします。

AIインフラの性能を根幹から支える新半導体も発表されました。次世代DPU「BlueField-4」は、AIデータ処理、ネットワーキング、セキュリティを加速し、大規模AI工場の中枢を担います。さらに、産業・医療のエッジ向けには、リアルタイム物理AIプロセッサ「IGX Thor」を投入。従来比最大8倍のAI性能で、工場の自動化や手術支援ロボットの進化を後押しします。

開発者エコシステムの拡大に向け、AIモデルのオープンソース化も加速します。高効率な推論でAIエージェント構築を容易にする「Nemotron」モデル群や、物理世界のシミュレーションを可能にする「Cosmos」基盤モデルを公開。さらに、次世代通信規格6Gの研究開発を促進するため、無線通信ソフトウェア「Aerial」もオープンソースとして提供します。

これらの技術は既に具体的な産業応用へと結実しています。製薬大手イーライリリーは、1000基以上のNVIDIA Blackwell GPUを搭載した世界最大級の創薬AIファクトリーを導入。General Atomicsは、核融合炉のデジタルツインを構築し、シミュレーション時間を数週間から数秒に短縮するなど、最先端科学の現場で成果を上げています。

今回の一連の発表は、AIが研究開発段階から、社会を動かす基幹インフラへと移行する転換点を示唆しています。NVIDIAが提示する「AIファクトリー」という概念は、あらゆる産業の生産性と競争力を再定義する可能性を秘めています。自社のビジネスにどう取り入れ、新たな価値を創造するのか。経営者やリーダーには、その構想力が問われています。

AIと量子、Googleが拓く科学研究の新境地

AIが拓く科学の最前線

AIによるがん遺伝子変異の特定
がん治療法の新たな仮説を生成
量子コンピュータで新アルゴリズム
Earth AIで地球規模の課題を予測

次世代研究者への投資

博士課程フェローシップ2025を発表
255名の学生1000万ドル超を支援
対象は35カ国、12の研究領域
Google研究者によるメンター制度も提供

Googleは10月23日、AIと量子コンピューティングを駆使した基礎研究の複数の画期的な成果を発表しました。がん細胞の遺伝子変異を特定する新AIツールや、創薬・新素材開発を加速する量子アルゴリズムなどを公開。現実世界の課題解決を基礎研究から応用へとつなげる「マジックサイクル」を加速させるのが狙いです。同時に、次世代の研究者を支援する博士課程フェローシッププログラムも発表しました。

がん治療の分野では、AIが目覚ましい成果を上げています。新AIツール「DeepSomatic」は、従来手法で見逃された小児白血病のがん遺伝子変異を新たに特定しました。さらに、AI「Cell2Sentence-Scale」は、がん細胞を免疫システムから見えやすくする薬剤の組み合わせという、新たな治療仮説を生成。AIが個別化医療の実現を後押しします。

創薬や新素材開発の鍵を握るのが、量子コンピューティングです。分子の正確な挙動のモデル化は従来のコンピュータでは困難でした。Googleは新アルゴリズム「Quantum Echoes」を発表。分子の挙動を精密に記述する計算を大幅に高速化し、実用的な応用への道筋を示しました。

地球規模の課題解決に向けては、「Earth AI」の開発が進みます。嵐の被害予測など複雑な課題には、気象、人口密度、インフラといった多様な地理空間データの統合分析が不可欠です。「Earth AI」はこれらの情報を統合し、これまで不可能だった複雑な問いへの答えを導き出すことを目指します。

最先端研究を支えるため、次世代の研究者育成にも注力しています。2025年の「博士課程フェローシッププログラム」では、35カ国255名の学生に総額1000万ドル以上を支援。資金提供に加え、Googleの研究者がメンターとなり、世界的な研究エコシステムの強化を図ります。

Google、スパコン超え量子計算を初実証

新アルゴリズムで量子超越

新開発「Quantum Echoes」
スパコン13,000倍高速な計算
世界初の検証可能な量子計算

高性能チップが成果を支える

105量子ビットチップ『Willow』
極めて低いエラー率と高速動作

創薬・新素材開発への応用

分子構造の精密な解析が可能に
NMR技術を補完・強化する新手法
創薬や材料科学での活用に道

Googleは2025年10月22日、世界で初めて「検証可能な量子超越性」を実証したと発表しました。新開発の量子アルゴリズム「Quantum Echoes」と高性能量子チップ「Willow」を用い、特定の問題でスーパーコンピュータを13,000倍上回る計算速度を達成。この成果は、創薬や新素材開発など実社会の課題解決に向け、量子コンピュータの実用化を大きく前進させるものです。

今回の成果の最大の意義は、計算結果が正しいことを確認できる「検証可能性」を世界で初めて示した点にあります。これまでの量子超越性の実証は、計算は速いものの、その答えが正しいかどうかの確認が困難でした。結果の信頼性が担保されたことで、量子コンピュータは実験的な段階から、実用的な科学ツールへと進化する新たな扉を開いたと言えるでしょう。

中核をなす新アルゴリズム「Quantum Echoes」は、量子系に信号を送り、その「反響(エコー)」を捉えることで、分子や磁石などのシステムの構造を解明します。Googleはこのアルゴリズムを使い、スパコンでは数千年かかる計算をわずかな時間で実行。その圧倒的な速度差が、量子コンピュータのポテンシャルを改めて示しました。

この画期的な計算を支えたのが、105量子ビットを搭載した最新チップ「Willow」です。極めて低いエラー率とナノ秒単位の高速なゲート操作を両立。このハードウェアの精度と速度があったからこそ、複雑かつ精密な計算が求められる「Quantum Echoes」の実行が可能になったのです。まさに、ソフトウェアとハードウェアの両輪が生んだ成果です。

具体的な応用として、医療分野で使われるNMR(核磁気共鳴)技術との連携が期待されています。量子コンピュータでNMRデータを解析することで、従来の方法では見えなかった分子構造の詳細な情報を得ることが可能になります。これは、効果的な新薬の発見や、高性能なバッテリー材料など新素材の開発を加速させる可能性を秘めています。

Googleは、誤り訂正機能を備えた大規模量子コンピュータの実現を目指すロードマップを掲げています。今回の「検証可能な量子超越性」の実証は、その道筋における重要な一歩です。実用的なアプリケーションの登場が視野に入り始めた今、各業界のリーダーは、この革新的技術が自社のビジネスに何をもたらすか、注視していく必要があるでしょう。

GoogleのAI、がん治療の新たな道を拓く

新AIモデル「C2S-Scale」

GoogleGemmaベースで開発
270億パラメータの大規模モデル
個々の細胞の言語を解読

がん治療への新アプローチ

免疫から隠れる「コールド」腫瘍が標的
4000超の薬剤を仮想スクリーニング
新薬候補silmitasertibを特定

AIの予測を実験で証明

AIの仮説を実験室で検証
免疫反応を約50%増強する効果を確認

Googleとイェール大学の研究チームは、オープンソースAIモデル「Gemma」を基に開発した新モデル「C2S-Scale 27B」を用い、がん治療の新たな経路を発見しました。このAIは、これまで免疫システムから見えなかった「コールド」腫瘍を、免疫が攻撃しやすい「ホット」な状態に変える可能性のある薬剤候補を特定。実験でもその効果が確認され、がん免疫療法の開発を加速させるブレークスルーとして期待されています。

今回開発された「C2S-Scale 27B」は、270億という膨大なパラメータを持つ基盤モデルです。個々の細胞が発する複雑な「言語」を解読するために設計されました。特筆すべきは、モデルの大規模化によって獲得された「創発的能力」です。これにより、小規模モデルでは不可能だった、特定の条件下でのみ薬が効果を発揮する、という複雑な因果関係の推論が可能になりました。

がん免疫療法の大きな課題は、多くの腫瘍が免疫細胞から身を隠す「コールド」な状態にあることです。研究チームはAIに対し、「低レベルの免疫信号(インターフェロン)が存在する環境下でのみ、免疫反応を増幅する薬剤」という非常に高度な条件を付けて探索させました。これは、腫瘍を特異的に「ホット」な状態に変えるための重要な戦略です。

AIは4,000種類以上の既存薬データを仮想スクリーニングし、キナーゼCK2阻害剤「silmitasertib」が上記の条件を満たすと予測しました。驚くべきことに、この薬剤が免疫反応を高めるという事実はこれまで文献で報告されておらず、AIが単なる既知の事実の再現ではなく、全く新しい科学的仮説を生成したことを意味します。

このAIの予測を検証するため、研究チームは実験室でヒトの細胞を用いてテストを実施しました。その結果、silmitasertibと低用量のインターフェロンを組み合わせることで、免疫システムが腫瘍を認識する目印となる「抗原提示」が約50%も増加することが確認されました。AIの予測は見事に証明されたのです。

今回の成果は、AIが創薬研究において、有望な仮説を高速に生成し、実験の方向性を示す強力なツールとなり得ることを示しました。GoogleはC2S-Scale 27Bモデルを研究コミュニティに公開しており、今後、この技術を応用した新しい併用療法の開発が世界中で加速することが期待されます。

AIが細胞変化を画像で予測、創薬の実験を代替

AI創薬の新モデル登場

新AIモデルMorphDiff
遺伝子情報から細胞画像を生成
実験前に薬の効果を可視化

コストと時間を大幅削減

高価な画像化実験を代替
作用機序の特定を高速化
画像に迫る予測精度を達成

ビジネスへの応用

新薬候補の優先順位付け
既存薬の再利用(リパーパシング)

アラブ首長国連邦のAI専門大学院大学MBZUAIの研究者らが、創薬プロセスを革新する可能性を秘めた新しいAIモデル「MorphDiff」を開発しました。このモデルは、薬物投与などによって変化する遺伝子の活動パターンをもとに、細胞がどのように変化するかを画像で高精度に予測します。これにより、時間とコストのかかる実験の一部をコンピュータ上のシミュレーションで代替することを目指します。

MorphDiffの核心は、画像生成AIで広く使われる「拡散モデル」技術の応用です。薬などの刺激によってどの遺伝子が活性化・不活性化したかという情報(トランスクリプトーム)を入力するだけで、摂動後の細胞のリアルな顕微鏡画像を生成できます。これにより、実験室で実際に細胞を培養し観察する前に、その結果をプレビューすることが可能になります。

この技術がもたらす最大の利点は、創薬研究における試行錯誤を大幅に削減できる点です。従来、何百万もの候補化合物の効果を一つ一つ画像化して評価するのは不可能でした。しかしMorphDiffを使えば、コンピュータ上で多数の化合物の効果をシミュレートし、有望な候補を効率的に絞り込めます。

生成される画像は単なる想像図ではありません。細胞の質感や内部構造といった数百もの生物学的特徴を正確に捉えており、その統計的分布は実際の実験データと区別がつかないレベルに達しています。この高い忠実性により、薬がどのように作用するかのメカニズム(MOA)を正確に推定するのに役立ちます。

具体的な応用例として、新薬候補のスクリーニングが挙げられます。未知の化合物が生み出す細胞変化の画像を予測し、既知の薬の作用パターンと比較することで、その化合物の潜在的な効果や副作用を迅速に評価できます。これは開発パイプライン全体の効率化に直結するでしょう。

現状では推論速度などの課題も残されていますが、今後の研究開発により、コンピュータ内での実験が現実の実験を強力に補完する未来が近づいています。この技術は、創薬研究のあり方を変え、より早く、より安価に新薬を届けるための重要な一歩となる可能性があります。

ノーコードで生命科学のデータ解析を高速化

開発の背景

生物学データの指数関数的な増大
データ解析が研究のボトルネック
生物学者と技術者の専門性の乖離

プラットフォームの特長

ノーコードでの複雑なデータ解析
クラウドベースのテンプレート提供
最新AIツールを手軽に利用可能

導入による効果

研究開発サイクルを10倍以上高速化
創薬や臨床研究の意思決定を支援

マサチューセッツ工科大学(MIT)発のスタートアップ「Watershed Bio」が、プログラミング不要で複雑な生命科学データを解析できるクラウド基盤を開発しました。ゲノム解析などが身近になる一方、膨大なデータを扱える専門家不足が課題でした。同社のノーコードプラットフォームは、生物学者が自らデータを扱い、新薬開発などの研究を加速させることを目指します。

近年、診断・シーケンシング技術のコストが劇的に低下し、研究現場では前例のない量の生物学データが蓄積されています。しかし、そのデータを新薬開発などに活かすには、ソフトウェア技術者の協力が不可欠で、研究のボトルネックとなっていました。

Watershedのプラットフォームは、専門家でなくとも直感的に操作できる点が強みです。ゲノムやタンパク質構造解析など、一般的なデータ種別に対応したワークフローのテンプレートを提供。これにより、研究者はコーディング作業から解放され、本来の科学的探究に集中できます。

さらに、AlphaFoldやGeneformerといった最新のAIツールもプラットフォーム上で手軽に利用できます。科学誌で発表された最先端の解析手法が即座にテンプレートとして追加されるため、研究者は常に業界の最前線で実験を進めることが可能です。

創業者のジョナサン・ワン氏は、かつて金融業界で同様の課題に直面しました。研究者とエンジニアの連携非効率を解決した経験が、この事業の着想に繋がっています。「生物学者をソフトウェアエンジニアにする必要はない」と同氏は語ります。

同社の目標は、科学的発見の速度を10倍から20倍に引き上げることです。すでに大手製薬会社から小規模な研究チームまで、学術界と産業界の双方で導入が進んでいます。研究の次のステップを迅速に判断するための、強力なツールとなっています。

AI生成タンパク質のバイオ脅威、MSが「ゼロデイ」発見し緊急パッチ適用

AIタンパク質の脅威発覚

AI設計による毒性タンパク質の生成
既存バイオ防御網の回避を確認
AIとバイオにおける初のゼロデイ脆弱性

緊急対応と国際協力

サイバー型CERTアプローチを適用
新たなAI耐性パッチを即時開発
IGSC通じ世界的に導入を完了

情報ハザード対策

機密データに階層型アクセスを適用
IBBISが利用申請を厳格審査

Microsoftの研究チームは、AIを用いたタンパク質設計(AIPD)ツールが悪性のタンパク質配列を生成し、既存のバイオセキュリティ・スクリーニングシステムを回避できるという深刻な脆弱性を発見しました。この「Paraphrase Project」は、AIとバイオセキュリティ分野における初の「ゼロデイ脆弱性」と認定され、サイバーセキュリティ型の緊急対応を促しました。この結果と対応策は、機密情報の開示方法に関する新たなモデルとともに科学誌Scienceに発表されました。

研究チームは、オープンソースのAIツールを利用して、毒素として知られるリシンなどのタンパク質配列を「パラフレーズ」(言い換え)するパイプラインを構築しました。その結果、生成された数千の変異体が、構造や機能を維持しながらも、主要なDNA合成企業が採用するスクリーニングソフトウェアの検出をすり抜けることが実証されました。これは、AIの高度な設計能力が、既存の防御手法(既知の配列との類似性に基づく)を無力化しうることを示しています。

この極めて危険な脆弱性の発見を受け、Microsoftは即座にサイバーセキュリティ分野のCERT(緊急対応チーム)モデルを採用しました。脆弱性の公表に先行して、Twist BioscienceなどのDNA合成企業や国際的なバイオセキュリティ機関と機密裏に連携し、10カ月間にわたり「レッドチーミング」を実施。AI設計タンパク質の検出能力を大幅に向上させる「パッチ」を開発し、国際遺伝子合成コンソーシアム(IGSC)を通じて世界中に迅速に展開しました。

AIタンパク質設計は、新薬開発などの恩恵と悪用のリスクという「二重用途のジレンマ」を内包します。研究結果の公開が悪意ある行為者に悪用される「情報ハザード」に対処するため、MicrosoftはIBBIS(国際バイオセキュリティ・バイオセーフティ・イニシアティブ・フォー・サイエンス)と協力し、画期的な開示モデルを確立することに注力しました。

この新モデルは、データとメソッドを潜在的な危険度に応じて分類する「階層型アクセスシステム」です。研究者はアクセス申請時に身元や目的を開示し、専門家委員会による審査を受けます。Science誌がこのアプローチを初めて正式に承認したことは、厳密な科学と責任あるリスク管理が両立可能であることを示し、今後の二重用途研究(DURC)における情報共有のテンプレートとして期待されています。

専門家らは、AIの進化により、既知のタンパク質を改変するだけでなく、自然界に存在しない全く新規の脅威が設計される時代が来ると警告しています。DNA合成スクリーニングは強力な防御線ですが、これに頼るだけでなく、システムレベルでの防御層を多重化することが不可欠です。AI開発者は、脅威認識と防御強化に直接応用する研究を加速させる必要があります。

AI創薬が新境地、抗生物質の作用機序を高速解明

AIが解明した新抗生物質

新化合物enterololinを発見
クローン病関連の悪玉菌のみを標的
腸内フローラへの影響を最小化

創薬プロセスを劇的に変革

AIが作用機序を数分で予測
開発期間を数年から数ヶ月に短縮
従来手法比で大幅なコスト削減
精密医療薬剤耐性問題への貢献

マサチューセッツ工科大学(MIT)とマクマスター大学の研究チームが、生成AIを活用し、クローン病に関連する特定の腸内細菌のみを標的とする新しい抗生物質の作用機序を解明しました。このAI技術により、通常は数年を要する研究がわずか数ヶ月に短縮され、精密な創薬開発の新たな可能性が示されています。

従来の広域抗生物質は、善玉菌まで殺してしまい、かえって症状を悪化させる課題がありました。原因菌だけを叩く「精密抗生物質」が求められていましたが、その薬が体内でどう働くか、作用機序の解明が開発の大きな障壁となっていました。

そこで研究チームは、MITが開発した生成AIモデル「DiffDock」を使用。このAIは、新化合物「enterololin」が細菌内の特定のタンパク質複合体に結合することをわずか数分で予測しました。この正確な予測が、その後の実験の「GPS」となり、研究を大幅に加速させました。

AIによる予測と実験室での検証を組み合わせることで、作用機序の解明にかかる期間を数年からわずか6ヶ月へと劇的に短縮。コストも大幅に削減できたといいます。これは、AIが単に候補物質を見つけるだけでなく、その働きを説明する段階にまで進化したことを示しています。

今回の成功は、クローン病治療に光明を灯すだけでなく、創薬プロセス全体の変革を予感させます。AIによる作用機序の迅速な解明は、治療が難しい他の病気や、深刻化する薬剤耐性菌問題に対する新たな武器となり得ます。臨床試験は数年以内に開始される見込みです。

MIT、米国大学最強のAIスパコンを公開

圧倒的な計算能力

米国大学で最強のAIスパコン
ピーク性能は2 AIエクサフロップス
600基以上のNVIDIAGPU搭載

生成AI研究を加速

生成AIの開発・応用に特化
創薬や新素材設計への応用
気象データ補完や異常検知

幅広い分野への貢献

航空管制や国防分野での実績
ユーザーフレンドリーな設計
エネルギー効率の高い運用も追求

マサチューセッツ工科大学(MIT)リンカーン研究所は2025年10月2日、米国の大学で最も強力なAIスーパーコンピュータ「TX-GAIN」を公開したと発表しました。このシステムは、生成AIや物理シミュレーション、データ分析といった最先端分野の研究を加速させ、科学技術におけるブレークスルー創出を目的としています。研究者はこの圧倒的な計算能力を活用し、新たなイノベーションを追求します。

TX-GAINの性能は、ピーク時で2 AIエクサフロップス(毎秒200京回のAI向け演算)に達します。AI処理に特化した600基以上のNVIDIAGPUがこの計算能力を支え、米国の大学でトップ、北東部地域全体でも最強のAIシステムと評価されています。今夏オンライン化されて以来、研究者の注目を集めています。

TX-GAINの名称が示す通り、特に生成AIの開発と応用に力が注がれています。大規模言語モデルだけでなく、レーダー署名の評価、気象データの補完、ネットワークの異常検知、さらには新薬や新素材の設計といった多様な領域で活用が進みます。これまで不可能だった規模のシミュレーションやモデル訓練が可能になります。

リンカーン研究所スーパーコンピューティングセンター(LLSC)は、これまでも国の重要課題解決に貢献してきました。連邦航空局向けの航空機衝突回避システムや、国防総省向けの自律航法モデルの訓練など、社会の安全保障に直結する研究で数々の実績を上げています。TX-GAINはこれらの取り組みをさらに加速させる強力な基盤となります。

LLSCは、専門家でなくてもスパコンを利用できる「インタラクティブ性」を重視し、ラップトップPCのような手軽な操作性を実現。同時に、AIの膨大な電力消費という課題にも向き合い、エネルギー効率の高い運用と省電力化技術の研究にも取り組むなど、持続可能な研究環境の構築を目指しています。

Google、量子計算加速へMIT発新興企業を買収

買収の概要

量子ハードウェア開発チームが合流
大規模量子コンピュータ開発の加速

注目の独自技術

独自技術モジュラーチップスタック
量子ビットと制御回路を極低温で統合
ハードウェア拡張性を大幅に向上

目指す将来像

誤り耐性量子コンピュータの実現へ
未解決の社会問題解決への応用

Googleは2025年10月2日、同社の量子AI部門にマサチューセッツ工科大学(MIT)発のスタートアップ、Atlantic Quantumのチームが加わると発表しました。同社の持つ独自のハードウェア技術を取り込むことで、大規模な誤り耐性量子コンピュータの開発を加速させる狙いです。この動きは、実社会の課題解決に向けた量子コンピューティング開発競争が新たな段階に入ったことを示唆しています。

今回のチーム合流の決め手は、Atlantic Quantumが持つ「モジュラーチップスタック」技術です。これは、量子コンピュータの心臓部である量子ビットと、それを制御する電子回路を極低温環境下で高密度に統合する革新的なアプローチであり、これまで技術的課題とされてきたハードウェアの拡張性(スケーラビリティ)を大幅に向上させることが可能になります。

この技術統合により、Googleの量子プロセッサ開発は一層加速することが期待されます。チップの設計・製造が効率化され、より多くの量子ビットを安定して搭載できるようになるためです。実用的な量子コンピュータの実現にはハードウェアの規模拡大が不可欠であり、今回のチーム合流はその重要な一歩と言えるでしょう。

Googleが目指す最終目標は、計算エラーを自動訂正する「誤り耐性」を持つ大規模量子コンピュータの構築です。これが実現すれば、創薬や材料開発、金融モデル最適化など、従来手法では解決不可能だった問題に取り組めるようになります。社会に大きな利益をもたらす技術への投資を、同社は今後も続ける方針です。

量子コンピューティング分野では、巨大IT企業間の開発競争が激化しています。今回の発表は、Googleハードウェアスケーリングという核心的課題に対し、外部の優れた知見を取り込んででも解決を急ぐという強い意志の表れです。今後の技術開発の進展から目が離せません。

AI Claude、大企業の生産性を劇的改善

主要企業の導入事例

製薬大手ノボノルディスク
サイバーセキュリティ大手
Salesforce、Cox Automotive

驚異的な業務効率化

文書作成時間を90%削減
ソフトウェア開発速度が最大30%向上
わずか3ヶ月で投資を回収

成功への鍵

具体的な事業課題から着手
重要指標を計測しROIを証明

AI開発企業Anthropicは、同社のAIモデル「Claude」が、製薬大手ノボノルディスクやSalesforceといったグローバル企業で導入され、事業変革を推進していると発表しました。各社はClaudeを活用し、開発速度の向上や文書作成時間の大幅な短縮、顧客対応の強化など、具体的な成果を上げています。これは、AIが単なる実験段階を越え、企業の中核業務に不可欠な存在となりつつあることを示しています。

特に顕著なのが、デンマークの製薬大手ノボノルディスクの事例です。同社は創薬開発のボトルネックとなっていた臨床試験報告書の作成にClaudeを導入。従来10週間以上かかっていた作業がわずか10分に短縮され、90%もの時間削減を達成しました。これにより、新薬を待つ患者へより迅速に治療を届けられる可能性が広がります。

他の業界でも成果は目覚ましいものがあります。世界最大のサイバーセキュリティ企業パロアルトネットワークは、Claudeを用いてソフトウェア開発の速度を20〜30%向上。自動車サービス大手のコックス・オートモーティブでは、顧客からの問い合わせ対応や試乗予約が2倍以上に増加するなど、顧客体験の向上に直結しています。

さらに、AIの活用はより高度な領域へと進んでいます。Salesforceは、人間の介入なしに業務を遂行する「自律型AIエージェント」の動力としてClaudeを統合。オンライントレーディング大手のIGグループは、分析業務の自動化などでわずか3ヶ月で投資回収(ROI)を達成したと報告しています。

Anthropicは、これらの成功事例に共通する特徴として、①具体的な事業課題から始めること、②技術だけでなく人材への投資を行うこと、③生産性向上などの重要指標を計測すること、の3点を挙げています。AI導入を成功に導くための重要な示唆と言えるでしょう。

GoogleのAI、科学的仮説を自ら生成し研究を加速

Googleが開発した「AI Co-Scientist」が、単なる情報検索ツールを超え、新しい科学的仮説を自ら生成する「研究の相棒」となり得ることを示しました。2つの生物医学研究でその能力が実証され、研究開発のプロセスを根本から変える可能性が注目されています。 スタンフォード大学の研究では、有効な治療法が少ない肝線維症の治療薬候補を探すためAIを活用。AIは既存薬の中から3つの候補を提案し、そのうち2つが実験で線維化を抑制し、肝臓再生の兆候さえ示しました。人間が選んだ候補薬では効果が見られませんでした。 インペリアル・カレッジ・ロンドンでは、細菌の進化に関する謎をAIに問いかけました。AIはわずか2日で、研究者らが数年かけて突き止めた未発表のメカニズムと同じ結論を導き出しました。その論理的な思考プロセスは研究者らを驚かせています。 このAIの強みは、科学的推論に特化した設計にあります。OpenAIなどの汎用モデルとは異なり、複数のAIエージェントが仮説の生成、批判、改良、順位付けを繰り返します。外部の文献やツールで情報を補強しながら、より深い思考を行う仕組みです。 Googleは現在、世界中の学術機関と協力し、このシステムのパイロット運用を進めています。スタンフォード大学の「Virtual Lab」など競合も登場しており、AIを科学的発見のエンジンにするための開発競争が激化しています。 一方で、AIは既存の情報を再構成しているだけで、真に独創的な発見はできないとの批判もあります。AIが生成した仮説に過度に依存すれば、人間の創造性や批判的思考が阻害されるリスクも指摘されており、今後の検証が求められます。 AIから価値ある洞察を引き出すには、専門家による巧みな問いかけや対話的なフィードバックが不可欠です。現段階では、AIは専門家の能力を拡張し、思考を補助する優秀なアシスタントと捉えるべきでしょう。

AI創薬、幻覚作用を排除した精神疾患治療薬を開発

スタートアップのMindstate Design Labsが、AIを活用して幻覚作用を伴わないサイケデリック様薬物を開発しました。同社は最近、オランダでの第1相臨床試験で、開発化合物「MSD-001」の安全性と忍容性を確認。7万件超の体験談をAIで分析し、精神疾患への有効作用のみを抽出する独自手法を採用。従来の治療が持つ副作用の克服を目指します。 同社の中核は、生化学データと7万件以上の「トリップレポート」を統合したAIプラットフォームです。臨床試験データからSNS、ダークウェブまで多岐にわたる情報源を解析。これにより、特定の薬物が脳に与える影響と、それによって引き起こされる精神状態との関係を精密にモデル化し、幻覚作用のない化合物の設計を可能にしました。 開発された「MSD-001」は、47人の健康な被験者を対象とした第1相臨床試験で良好な結果を示しました。参加者は幻覚や自己喪失感を経験することなく、感情の高まりや想像力の向上といった精神作用を報告。これは同社のAIプラットフォームの有効性を裏付ける重要な成果と言えるでしょう。 さらに、脳波測定によっても薬物の有効性が示唆されています。MSD-001を投与された被験者の脳は、シロシビンなど従来のサイケデリック薬物で見られる脳波パターンと多くが一致しました。これは、薬物が脳に到達し、神経可塑性を促進するという意図した通りの作用を発揮していることを科学的に裏付けるものです。 このアプローチの根底には、サイケデリックの治療効果は幻覚体験ではなく、神経可塑性の促進にあるという仮説があります。神経可塑性とは、ニューロンが成長し新たな接続を形成する能力のこと。MSD-001は、この作用に関わるセロトニン2a受容体を標的とし、不要な副作用を排除する設計となっています。 Mindstate社はMSD-001を基盤とし、他の薬物を組み合わせて不安軽減や洞察力向上など特定の精神状態を精密に実現する治療薬を目指しています。ただし、今後はFDA(米国食品医薬品局)の承認という大きな規制の壁を乗り越える必要があります。トークセラピーと切り離した薬単体での承認を計画しています。 専門家の評価は分かれています。幻覚のない穏やかな体験は、より多くの患者にとって安全な選択肢になり得るとの肯定的な見方がある一方、「幻覚を伴わないものはサイケデリックとは呼べない」との指摘も。しかし、うつ病などに苦しむ人々が単に「気分を良くしたい」と望むなら、有効な治療法になる可能性は認められています。 2021年設立の同社は、Y CombinatorやOpenAI、Coinbaseの創業者など著名な投資家から支援を受けています。これは、AIを活用した創薬、特にアンメット・メディカル・ニーズが高い精神疾患領域への期待の表れと言えるでしょう。今後の事業展開が注目されます。

著名VCが断言「AGIより量子コンピュータが未来を拓く」

著名ベンチャーキャピタリストのアレクサ・フォン・トーベル氏が、次の技術革新の波として量子コンピューティングに大きな期待を寄せています。同氏が率いるInspired Capitalは最近、量子コンピュータ開発を手がけるスタートアップ「Logiqal」社に投資しました。AIの計算需要がインフラを再定義する中で、量子コンピュータこそがAGI(汎用人工知能)以上に科学的発見を解き放つと、同氏は考えています。 なぜ今、量子コンピュータなのでしょうか。フォン・トーベル氏は、AIの急速な進化が背景にあると指摘します。AIが必要とする膨大な計算能力は、既存のインフラを根本から変えつつあります。この大きな変化が、量子コンピュータのような次世代技術の成功確率を高める土壌になっていると分析しています。同氏は量子を「AIの次の革新の波」と位置づけています。 投資先として、同氏はソフトウェアではなくハードウェア開発に焦点を当てました。特に、数あるアプローチの中でも「中性原子」方式に高い将来性を見出しています。そして、この分野の第一人者であるプリンストン大学のジェフリー・トンプソン教授が率いるLogiqal社への出資を決めました。まずは実用的な量子コンピュータを構築することが最優先だと考えています。 量子コンピュータが実現すれば、社会に計り知れない価値をもたらす可能性があります。フォン・トーベル氏は、製薬、材料科学、物流、金融市場など、あらゆる分野で革新が起こると予測します。人間の寿命を20〜30年延ばす新薬の開発や、火星探査を可能にする新素材の発明も夢ではないと語っており、「地球を動かす」ほどのイノベーションになるとしています。 量子分野は、AI分野と大きく異なると同氏は指摘します。世界の量子専門家は数百人程度と非常に限られており、才能の真贋を見極めやすいといいます。一方、AI分野では専門家を自称することが容易で、多くの企業がブランドやスピード以外の持続的な競争優位性、つまり「堀」を築けていないのが現状です。巨大IT企業が優位な市場で、スタートアップが生き残るのは容易ではありません。

Gemini 2.5がICPCで金獲得。人間不能の難問を30分で解決しAGIへ前進

プログラミング能力の証明

ICPC世界大会で金メダルレベルの成績
全12問中10問を正解し総合2位相当
人間チームが解けなかった難問Cを突破
国際数学オリンピック(IMO)に続く快挙

技術的ブレイクスルー

マルチステップ推論並列思考能力を活用
動的計画法と革新的な探索手法を適用
創薬半導体設計など科学工学分野への応用期待
プログラマーの真の協働パートナーとなる可能性

Google DeepMindのAIモデル「Gemini 2.5 Deep Think」が、2025年国際大学対抗プログラミングコンテスト(ICPC)世界大会で金メダルレベルの成果を達成しました。人間チームが誰も解けなかった複雑な最適化問題を見事に解決し、抽象的な問題解決能力におけるAIの劇的な進化を証明しました。

Geminiは競技ルールに従い、5時間の制限時間で12問中10問を正解しました。これは出場した大学139チームのうち、トップ4にのみ与えられる金メダルレベルに相当し、大学チームと比較すれば総合2位の成績となります。

特に注目すべきは、全ての人間チームが解決できなかった「問題C」を、Geminiが開始からわずか30分以内に効率的に解いた点です。これは、無限に存在する構成の中から、最適な液体分配ネットワークを見つけ出すという、極めて困難な課題でした。

Geminiは、各リザーバーに「プライオリティ値」を設定し、動的計画法を適用するという革新的なアプローチを採用しました。さらにミニマックス定理を利用し、最適解を効率的に導出するためにネストされた三進探索を駆使しました。

この快挙は、プレトレーニング強化学習、そして複数のGeminiエージェントが並列で思考し、コードを実行・検証するマルチステップ推論技術の統合によって実現しました。これにより、Geminiは最も困難なコーディング課題からも学習し進化しています。

ICPCの成果は、AIがプログラマーにとって真の問題解決パートナーになり得ることを示しています。AIと人間の知見を組み合わせることで、ロジスティクスやデバッグ創薬、マイクロチップ設計といった科学・工学分野の複雑な課題解決を加速させることが期待されます。

この先進技術の一部は、すでにGoogle AI Ultraのサブスクリプションを通じて、軽量版のGemini 2.5 Deep Thinkとして提供されています。AIコーディングアシスタントの知能が飛躍的に向上し、開発現場の生産性向上に直結するでしょう。

NVIDIAが英国の「AIメーカー」戦略を加速 物理AI・創薬・ロボティクス分野で広範に連携

英国の国家AI戦略を支援

英国のAI機会行動計画を後押し
世界クラスの計算基盤への投資
AI採用を全経済分野で推進
AIユーザーでなくAIメーカーを目指す

重点分野での協業事例

スパコンIsambard-AI」で基盤構築
ロボティクス:自律走行、製造、ヒューマノイド開発
ライフサイエンス:AI創薬デジタルツインを活用

NVIDIA英国のAIエコシステムとの広範なパートナーシップを強調し、英国の国家戦略である「AIメーカー」としての地位確立を強力に支援しています。ジェンスン・ファンCEOの英国訪問に際し、物理AI、ロボティクス、ライフサイエンス、エージェントAIなど最先端領域における具体的な協業事例が公表されました。

英国のAI基盤強化の核となるのは、NVIDIA Grace Hopper Superchipsを搭載した国内最速のAIスーパーコンピューター「Isambard-AI」です。これにより、公的サービスの改善を目指す独自の多言語LLM(UK-LLM)や、早期診断・個別化医療に向けた医療基盤モデル(Nightingale AI)など、重要な国家プロジェクトが推進されています。

特に物理AIとロボティクス分野での応用が加速しています。Extend Roboticsは製造業向けに安全なロボット遠隔操作システムを開発。Humanoid社は倉庫や小売店向けの汎用ヒューマノイドロボットを開発しており、いずれもNVIDIAのJetsonやIsaacプラットフォームが活用されています。

ライフサイエンス分野では、AIによる創薬の加速が目覚ましいです。Isomorphic LabsはAI創薬エンジンを構築し、英国CEiRSIはNVIDIA技術を用いて複雑な患者のデジタルツインを作成。これにより、大規模かつ多様な患者集団に対する新しい治療法のテストを可能にしています。

エージェントAIおよび生成AIのイノベーションも活発です。Aveniは金融サービスに特化したLLMを開発し、コンプライアンスを確保しながら顧客対応やリスク助言を行うエージェントフレームワークを構築しました。ElevenLabsやPolyAIは、超リアルな音声生成や、大規模な顧客サポート自動化を実現しています。

また、AIスキルギャップ解消への取り組みも重要です。技術ソリューションプロバイダーのSCANは、NVIDIA Deep Learning Instituteと連携し、コミュニティ主導型のトレーニングプログラムを展開しています。これにより、英国全土でAIや専門的なワークロードに対応できる人材育成が進められています。

DeepMind責任者が語る「AIコ・サイエンティスト」戦略

AlphaFold成功の鍵

独自の問題解決フレームワーク
タンパク質構造予測を革新
AlphaFoldAlphaEvolveを開発

科学発見の民主化へ

新ツール「AIコ・サイエンティスト
科学的ブレイクスルーを万人へ
研究開発の飛躍的な加速に貢献

DeepMindの戦略

科学・戦略イニシアチブを主導
AIによる科学の未来像を提示

Google DeepMindのPushmeet Kohli氏が、最新のポッドキャストでAIによる科学的ブレイクスルー加速戦略について解説しました。同氏は、AlphaFoldの成功を導いた独自の知見を共有し、その恩恵を広く社会に提供するための新構想「AIコ・サイエンティスト」に焦点を当てています。

DeepMindが過去に成し遂げたAlphaFoldやAlphaEvolveといった画期的なイノベーションは、同チームが適用した独自の「問題解決フレームワーク」から生まれました。このユニークなアプローチこそが、複雑で難解な科学的問題を効率的に解き明かす鍵となると強調されています。

同氏が提唱する「AIコ・サイエンティスト」は、その成功体験を基に構築される次世代のツール群です。これは、AIが人間科学者と協働し、特定の分野に留まらず、あらゆる人が科学的発見を達成可能にすることを目指しています。

この取り組みは、特にAI活用を志向する企業経営者エンジニアにとって重要です。AIコ・サイエンティストが研究開発(R&D;)の現場に浸透すれば、創薬や新素材開発におけるイノベーションの所要時間とコストが劇的に削減され、企業の収益性向上に直結します。