ドローン(ロボット)に関するニュース一覧

AI兵器開発が加速、チャットボットが戦場へ

AI兵器開発の最前線

音声命令でドローン群を操作
指揮命令系統を効率化するAI
ウクライナ戦争が価値を証明
10-20年で戦争は高度に自動化

大手テックの参入と課題

国防AI関連契約は1年間で1200%増
OpenAIなど大手も軍事契約
強みは諜報・サイバー攻撃
課題は信頼性とエラーの多さ

米国の防衛関連企業Andurilが、大規模言語モデル(LLM)を活用した自律型ドローンの実験を公開しました。音声コマンドで模擬敵機を撃墜するなど、AIを指揮命令系統に組み込む試みが進んでいます。米国防総省は、ウクライナ戦争で価値が証明された自律型兵器の開発を急いでおり、大手テック企業も次々と参入。AIが戦場の様相を一変させる未来が現実味を帯びています。

開発が加速する背景には、ウクライナ戦争があります。低コストで戦況を有利にする自律型ドローンの有効性が世界に示されたのです。さらに、AI技術の覇権を巡る米中間の競争も激化しています。最先端技術を制する者が世界を制するという戦略思想のもと、米国はAI兵器への投資を急速に拡大しているのです。

投資額の伸びは驚異的です。ブルッキングス研究所の報告によると、米連邦政府のAI関連契約額は2022年8月から1年間で1200%増加し、その大半を国防総省が占めています。2026年度の国防予算には、AIと自律性専門で134億ドルが初めて計上されるなど、国家としての推進姿勢は鮮明です。

この潮流は、かつて軍事協力をためらった大手テック企業の姿勢をも変えました。2018年にはGoogleがAI画像解析プロジェクトから撤退しましたが、現在ではOpenAIGoogleAnthropicなどが、それぞれ最大2億ドル規模の軍事関連契約を獲得。AIの軍事転用が巨大ビジネスになりつつあります。

LLMはなぜ軍事利用に適しているのでしょうか。専門家は、大量の情報を解析・要約する能力が諜報活動に、コード生成・分析能力がサイバー攻撃に非常に有効だと指摘します。一方で、現在のモデルは誤情報を生成するなど信頼性に課題を抱え、戦場での直接的な意思決定を任せるには時期尚早との見方もあります。

とはいえ、技術の進化は止まりません。AndurilはMeta社と共同で、兵士向けのARヘルメットを開発中です。専門家は、10〜20年後には自律性の高いロボットが戦場で活動するのが当たり前になると予測します。AIが自らの判断と行動を「自分の言葉で」説明する、そんな未来の戦争が迫っています。

ゲームデータで次世代AI、新興企業に200億円超

次世代AI「ワールドモデル」

人間のような空間認識を持つAI
物理世界の因果関係を予測する技術
ロボットや自動運転への応用

General Intuitionの強み

ゲーム動画データ年間20億本
AIが行動を学ぶ検証可能な環境
OpenAIも欲したデータの価値

大型シード資金調達

調達額は1億3370万ドル
OpenAI初期投資家が主導

ビデオゲームのプレイ動画からAIが世界を学ぶ。新興AIラボ「General Intuition」は2025年10月17日、ゲームデータを用いてAIに物理世界を理解させる「ワールドモデル」を開発するため、シードラウンドで1億3370万ドル(約200億円)を調達したと発表しました。この動きは、AIエージェント開発における新たなフロンティアを開拓する試みとして、業界の大きな注目を集めています。

ワールドモデル」とは、AIが人間のように空間を認識し、物事の因果関係を予測する能力を指します。例えば、テーブルから落ちるコップを事前に掴むといった、物理世界での直感的な判断を可能にします。Google DeepMindなどが研究を主導しており、自律型AIエージェント実現の鍵と見なされています。汎用人工知能(AGI)への道筋としても期待される重要技術です。

同社の強みは、親会社であるゲーム録画プラットフォーム「Medal」が保有する膨大なデータにあります。年間約20億本アップロードされるプレイ動画は、AIが3次元空間での「良い行動」と「悪い行動」を学ぶための検証可能な学習データセットとなります。このデータの価値は非常に高く、過去にはOpenAIが5億ドルでの買収を提案したとも報じられています。

今回の大型資金調達を主導したのは、OpenAIの初期投資家としても知られるKhosla Venturesです。創業者のヴィノド・コースラ氏は「彼らは独自のデータセットとチームを持っている」と高く評価。General Intuitionが、LLMにおけるOpenAIのように、AIエージェント分野で破壊的な影響をもたらす可能性があると大きな期待を寄せています。

General Intuitionは、開発したモデルをまず捜索救助ドローンに応用し、将来的には人型ロボットや自動運転車への展開を目指します。しかし、この分野はGoogleのような資金力豊富な巨大企業との競争が激しく、技術的なアプローチもまだ確立されていません。どのデータや手法が最適かは未知数であり、大きなリスクも伴います。

今回の動きは、ゲーム業界に新たな可能性を示唆しています。ワールドモデルへの関心が高まるにつれ、ゲーム企業が保有するデータはAI開発の宝庫となり、大手AIラボの買収対象となる可能性があります。自社データの価値を正しく理解し、戦略を立てることが、今後のAI時代を勝ち抜く上で重要になるでしょう。

ゲーム動画でAI訓練、時空間推論へ200億円調達

巨額調達の背景

シードで約200億円という巨額調達
ゲーム動画共有Medal社からスピンアウト
年間20億本動画を学習データに活用
OpenAI買収を試みた優良データ

AIの新たな能力

LLMが苦手な物理世界の直感を学習
未知の環境でも行動を的確に予測

想定される応用分野

ゲーム内の高度なNPC開発
捜索救助ドローンロボットへの応用

ゲーム動画共有プラットフォームのMedal社からスピンアウトしたAI研究所「General Intuition」が、シードラウンドで1億3370万ドル(約200億円)という異例の資金調達を発表しました。同社は、Medalが持つ年間20億本ものゲーム動画を学習データとし、AIに現実世界での動きを直感的に理解させる「時空間推論」能力を訓練します。これは現在の言語モデルにはない能力で、汎用人工知能(AGI)開発の新たなアプローチとして注目されています。

同社が活用するゲーム動画データは、その質の高さからOpenAIも過去に買収を試みたと報じられるほどです。CEOのピム・デ・ウィッテ氏によれば、ゲーマーが投稿する動画は成功や失敗といった極端な事例(エッジケース)が多く、AIの訓練に非常に有用なデータセットとなっています。この「データ・モート(データの堀)」が、巨額の資金調達を可能にした大きな要因です。

「時空間推論」とは、物体が時間と空間の中でどのように動き、相互作用するかを理解する能力を指します。文章から世界の法則を学ぶ大規模言語モデル(LLM)に対し、General Intuitionは視覚情報から直感的に物理法則を学ばせるアプローチを取ります。同社は、この能力こそが真のAGIに不可欠な要素だと考えています。

開発中のAIエージェントは、訓練に使われていない未知のゲーム環境でも、人間のプレイヤーが見るのと同じ視覚情報のみで状況を理解し、次にとるべき行動を正確に予測できる段階にあります。この技術は、ゲームのコントローラーで操作されるロボットアームやドローン、自動運転車といった物理システムへ自然に応用できる可能性があります。

初期の実用化分野として、2つの領域が想定されています。一つは、ゲーム内でプレイヤーの習熟度に合わせて難易度を動的に調整し、常に最適な挑戦を提供する高度なNPC(ノンプレイヤーキャラクター)の開発です。もう一つは、GPSが使えない未知の環境でも自律的に飛行し、情報を収集できる捜索救助ドローンの実現です。

競合他社がシミュレーション環境(ワールドモデル)そのものを製品化するのに対し、General Intuitionはエージェントの応用事例に注力する戦略をとります。これにより、ゲーム開発者コンテンツと競合したり、著作権問題を引き起こしたりするリスクを回避する狙いもあります。

今回の資金調達はKhosla VenturesとGeneral Catalystが主導しました。シードラウンドとしては異例の規模であり、ゲームから生まれたデータが次世代AI開発の鍵を握るという期待の大きさを物語っています。同社の挑戦は、AI技術の新たな地平を切り開くかもしれません。

老舗園芸大手、AIで1.5億ドル削減への道

AI導入の目覚ましい成果

サプライチェーンで1.5億ドル削減目標
顧客サービス応答時間を90%改善
ドローン活用による在庫管理の自動化
週次の機動的なマーケティング予算配分

成功を支える3つの柱

150年の専門知識をデータ化し活用
階層化した独自AIエージェント構築
外部パートナーとのエコシステム戦略
経営層の強いリーダーシップと組織改革

米国の園芸用品大手ScottsMiracle-Gro社が、AIを駆使してサプライチェーンコスト1.5億ドルの削減目標の半分以上を達成し、顧客サービスも大幅に改善しました。経営不振からの脱却と、150年の歴史で培った独自の専門知識をデジタル資産に変え、競争優位性を確立することが目的です。半導体業界出身のリーダー主導で組織改革を行い、社内に眠る膨大な知見をデータ化し、独自AIを構築しました。

変革の起点は、社長による「我々はテクノロジー企業だ。まだ気づいていないだけだ」という宣言でした。従来の機能別組織を解体し、新たに3つの事業部を設立。各事業部長に財務成果だけでなく、テクノロジー導入の責任も負わせることで、AI活用をIT部門任せにせず、全社的なビジネス課題として取り組む体制を整えました。

成功の鍵は、150年かけて蓄積された膨大な専門知識、いわゆるドメイン知識のデジタル化にありました。「考古学的作業」と称し、旧来のシステムや書類の山に埋もれていた知見を発掘。データ基盤にDatabricksを採用し、GoogleのLLM「Gemini」を用いて社内文書を整理・分類することで、AIが学習可能なデータ資産へと転換させました。

汎用AIの導入には課題もありました。例えば、除草剤と予防剤を混同し、顧客の芝生を台無しにしかねない誤った提案をするリスクが判明。そこで同社は、問い合わせ内容に応じてブランド別の専門AIエージェントに処理を割り振る、独自の階層型AIアーキテクチャを構築。これにより、正確で文脈に沿った対応を実現しました。

AIの活用は全社に及びます。ドローンが広大な敷地の在庫量を正確に測定し、需要予測モデルは天候や消費者心理など60以上の要因を分析。テキサス州で干ばつが起きた際には、即座に販促費を天候の良い地域へ再配分し、業績向上に貢献しました。顧客サービス部門でもAIが問い合わせメールの回答案を数秒で作成し、業務効率を劇的に改善しています。

同社は、シリコンバレー企業と給与で競うのではなく、「自分の仕事がビジネスに即時のインパクトを与える」という魅力を提示し、優秀な人材を獲得。GoogleMetaなど外部パートナーとの連携を密にし、少人数の社内チームで成果を最大化するエコシステムを構築しています。この戦略こそ、伝統的企業がAI時代を勝ち抜くための一つの答えと言えるでしょう。

YC最注目株:AIエージェントとインフラが主戦場

AIインフラと業務特化

AI向けStripe統合基盤の開発(Autumn)
AIエージェント自動デプロイ基盤(Dedalus Labs)
本番環境のバグを修正するAIエンジニア(Keystone)
保険金請求を自動化する業務特化AI(Solva)

ニッチ市場と成長性

AI生成デザインクラウド評価(Design Arena)
会話に特化したAI言語家庭教師(Pingo AI)
女性向け友人マッチングAIの急成長(RealRoots)
コスト効率の高いドローン兵器(Perseus Defense)

先週開催されたYCサマー2025デモデイでは、160社超のスタートアップが登壇しました。今回の傾向は、従来の「AI搭載」製品から、AIエージェントとそれを開発・運用するための専門インフラへの明確なシフトです。投資家の間で特に注目を集めたのは、複雑な課金管理やインフラ自動化を担うB2Bソリューション群でした。

最も求められるスタートアップ9社からは、AI市場の成熟度が見て取れます。特に、複雑な従量課金モデルに対応する「Stripe for AI」や、エージェントの自動デプロイを可能にする「Vercel for AI agents」など、AI経済を足元から支えるツールが多数登場しました。これは市場が本格的な収益化フェーズに入ったことを示唆します。

B2B領域では、AutumnがAI特有の複合的な課金モデルを簡素化し、既に40社のYCスタートアップで採用されています。また、Dedalus Labsは、AIエージェントオートスケーリングや負荷分散を自動化し、数時間かかっていたデプロイ作業を数クリックで完了させます。インフラ効率化が成長の鍵です。

業務特化型AIも高い収益性を示しています。保険金請求プロセスを自動化するSolvaは、ローンチからわずか10週間で年間経常収益(ARR)24.5万ドルを達成。また、本番環境のバグをAIが自動修正するKeystoneも、多額の買収提案を断るほどの評価を受けています。

消費者向けサービスでは、AIを活用したニッチな社会的課題解決が成功事例となりました。女性の孤独解消を目的とした友人マッチングAI「RealRoots」は、月間収益78.2万ドルを稼ぎ出しています。また、会話に特化したAI家庭教師「Pingo AI」も月次70%成長と驚異的な伸びです。

異色な注目株としては、軍事・防衛分野のPerseus Defenseが挙げられます。同社は、安価なドローン群を迎撃するためのコスト効率の高いミニミサイルを開発しており、複数の米国軍関係機関からデモ実演に招かれるなど、国防技術の需要の高まりを反映しています。