ロボティクス(産業・業界)に関するニュース一覧

テスラ、マスク氏の1兆ドル報酬案を承認 AI・ロボット化加速へ

巨額報酬案の概要

CEOへの史上最大級の報酬
時価総額8.5兆ドルへの挑戦
ロボタクシー100万台の稼働
人型ロボット100万台の販売

承認の背景と課題

マスクCEOの指導力維持が目的
株主の75%以上が賛成票
売上減速など事業環境は厳化
一部大株主や助言会社は反対

電気自動車(EV)大手のテスラは2025年11月6日、オースティンで開いた株主総会で、イーロン・マスク最高経営責任者(CEO)に対する新たな巨額報酬案を承認しました。75%以上の賛成票を得たこの決定は、同社のAIやロボティクス事業への転換を加速させるため、マスク氏のリーダーシップを確保する狙いがあります。

承認された報酬案は、マスク氏に野心的な目標達成を課すものです。今後10年間で、テスラの時価総額を現在の1.5兆ドルから8.5兆ドルへと引き上げることが求められます。さらに、100万台のロボタクシー稼働や100万体の人型ロボット販売なども条件に含まれており、達成すればマスク氏の株式保有比率は約25%に上昇します。

取締役会は、報酬案を承認しなければマスク氏が他の事業に注力し、テスラを離れるリスクがあると警告していました。テスラが単なる自動車メーカーではなく、AIとロボティクスのリーダーになるためには、マスク氏の強力な指導力が不可欠であるというメッセージを株主に訴え、支持を取り付けた形です。

この報酬案には、一部から強い反対もありました。ノルウェーの政府系ファンドなど一部の大株主や、大手議決権行使助言会社が反対を表明。また、以前の500億ドル超の報酬案がデラウェア州の裁判所で無効とされた経緯もあり、司法判断との整合性を問う声も上がっていました。

テスラは現在、売上の急減や中国メーカーとの競争激化など、厳しい事業環境に直面しています。投入したロボタクシーサービスは事前の期待を下回り、新型車「サイバートラック」の販売も苦戦しています。壮大な目標達成への道のりは、決して平坦ではないとの見方が広がっています。

OpenAI、210兆円投資も政府の救済は不要

巨額の投資計画

今後8年で1.4兆ドル投資
年間経常収益は200億ドル
2030年に数千億ドル規模へ

政府保証をめぐる騒動

CFOが政府の融資保証を要請
CEOは「政府保証は不要」と否定
市場競争での自立経営を強調

未来の収益源

エンタープライズ向けサービス
コンシューマー向けAIデバイスロボット
AIクラウドの直接提供

OpenAIサム・アルトマンCEOは11月6日、X(旧Twitter)への投稿で、同社の年間経常収益(ARR)が200億ドルを超え、今後8年間で約1.4兆ドル(約210兆円)のインフラ投資を計画していると明かしました。同時に、経営幹部が求めた政府による金融支援を明確に否定し、市場競争における自立経営の姿勢を強調しました。

アルトマン氏はなぜ政府の支援を拒んだのでしょうか。同氏は「政府は勝者や敗者を選ぶべきではなく、納税者は事業判断を誤った企業を救済すべきではない」との信念を表明。AI開発の熾烈な競争は、あくまで市場原理の中で勝ち抜くべきだという強い意志を示しました。唯一の例外として、米国内の半導体工場建設支援には協力する姿勢を見せています。

この発言の背景には、同社のサラ・フライヤーCFOによる「失言」がありました。同氏は金融イベントで、巨額のインフラ投資に対する政府の融資保証(バックストップ)を求めると発言。この発言が「納税者にリスクを負わせるのか」と批判を浴び、すぐさま撤回に追い込まれる事態となっていました。

1.4兆ドルという天文学的な投資は、同社の急成長が可能にすると見られています。今年の年間経常収益は200億ドル(約3兆円)を超える見込みで、2030年までには数千億ドル規模への成長を目指すとしています。この力強い収益力が、巨大な先行投資を支える基盤となります。

では、具体的にどう収益を拡大するのでしょうか。アルトマン氏は、既存のエンタープライズ向けサービスに加え、コンシューマー向けAIデバイスロボティクス、さらには「AIクラウド」としてコンピューティング能力を他社に直接提供する事業構想を明らかにしました。多角的な収益源の確保を急いでいます。

今回の一連の騒動は、OpenAIの並外れた野心と、それを自力で成し遂げようとする強い独立志向を浮き彫りにしました。AI業界の覇権をめぐる競争が、新たな次元に突入したことを示す出来事と言えるでしょう。

独の産業革新へ、NVIDIAとテレコムがAIクラウド創設

データ主権守る巨大AI基盤

10億ユーロ規模の共同事業
ドイツ国内でデータを管理
欧州の産業競争力を強化
2026年初頭に稼働開始

最高峰技術とエコシステム

NVIDIA最新GPUを最大1万基
独テレコムがインフラ提供
SAP、シーメンス等が参画

半導体大手NVIDIAドイツテレコムは11月4日、ドイツ国内に世界初となる産業特化のAIクラウド「Industrial AI Cloud」を共同で設立すると発表しました。総額10億ユーロを投じ、2026年初頭の稼働を目指します。この提携は、ドイツのデータ主権を守りながら産業のデジタルトランスフォーメーションを加速させ、欧州の国際競争力を高めることを目的としています。

NVIDIAのジェンスン・フアンCEOは、AIを稼働させるデータセンターを「現代版の工場」と表現し、知能を生み出す重要性を強調しました。このプロジェクトは、欧州企業が自国のデータ管理下で安全にAI開発を進める「ソブリンAI(データ主権AI)」の実現に向けた大きな一歩となります。

ミュンヘン近郊に新設される「AIファクトリー」には、NVIDIAの最新GPU「Blackwell」アーキテクチャを採用したシステムなどが最大10,000基搭載される計画です。ドイツテレコムは信頼性の高いインフラと運用を提供し、企業が大規模なAIモデルのトレーニングや推論を高速かつ柔軟に行える環境を整えます。

この構想には、ソフトウェア大手SAPや製造業大手シーメンスなど、ドイツを代表する企業がエコシステムパートナーとして参画します。メルセデス・ベンツやBMWといった自動車メーカーも、AI駆動のデジタルツインを用いた複雑なシミュレーションでの活用を見込んでおり、幅広い産業での応用が期待されます。

具体的な活用例としては、製品開発を高速化するデジタルツイン、工場の自動化を進めるロボティクス、設備の故障を事前に予測する予知保全などが挙げられます。製造業の変革を促す「インダストリー4.0」をさらに加速させる起爆剤となるでしょうか。

今回の提携は、ドイツの国際競争力強化を目指す官民イニシアチブ「Made for Germany」から生まれた最初の具体的な成果の一つです。欧州では、外国の巨大テック企業への技術依存を減らしデジタル主権を確立する動きが強まっており、このAIクラウド欧州独自の技術革新の新たな核となる可能性を秘めています。

「アルトマンを選ぶ」著名記者がCEOを辛口採点

テックCEOへの評価

ザッカーバーグ氏との同乗は拒否
アルトマン氏の正常性を評価
マーク・キューバン氏は成熟
イーロン・マスク氏は悲しい存在

AIとシリコンバレー

AIは影響甚大な汎用技術
ロボティクスとAIの組合せが鍵
OpenAINetscapeかGoogle
シリコンバレー人を気にしない

米国の著名テックジャーナリスト、カラ・スウィッシャー氏がWIREDのインタビューに応じました。同氏はメタ社のザッカーバーグCEOよりOpenAIのアルトマンCEOの下で働きたいと述べ、テック業界のリーダー達を辛口に評価。AIの未来についても見解を示しました。

「誰とエレベーターに乗りたくないか」との問いに、ザッカーバーグ氏と即答。一方、アルトマン氏には「正常さの片鱗がある」と評価。自己の問題を理解している点で、両者を明確に対比しています。

他のリーダーにも言及。マスク氏を「悲しい存在」、クック氏には失望感を示しました。一方で、かつて傲慢だったマーク・キューバン氏が思慮深い人物に成熟したことは驚きだったと語ります。

シリコンバレーが自らにつく最大の嘘は「人々を気に掛けている」ことだと断じます。政治権力への迎合は、社会への義務感からではなく、株主価値を最優先する姿勢の表れだと指摘しました。

AIはあらゆる分野に及ぶ「汎用技術」だと重要性を強調。特に注目度の低いロボティクスとの組み合わせが社会を変える鍵になるとの見方を示しました。OpenAIGoogleのような存在になり得ると予測します。

一方で、若い世代には希望を見出しています。現在のリーダーとは異なり、彼らはコミュニティを助け、価値あるものを創るという純粋な理想を持っていると語ります。業界の未来は彼らにかかっているのかもしれません。

NVIDIA、韓国と提携 25万GPUで主権AI構築へ

官民挙げた国家プロジェクト

NVIDIA韓国官民が歴史的提携
最新GPU 25万基超を国家規模で導入
「主権AI」とAIファクトリーの構築
サムスン・現代など財閥企業が参画

主要産業のAI化を加速

製造・モビリティ分野の産業革新
韓国語LLMや次世代通信6Gも開発

半導体大手NVIDIAは2025年10月31日、韓国のAPEC首脳会議で、同国政府や主要企業と国家規模のAIインフラ構築で提携すると発表しました。サムスン電子などと連携し25万基以上の最新GPUを導入、韓国独自の「主権AI」開発を加速させます。国全体の産業基盤をAI時代に対応させる歴史的な投資となります。

プロジェクトの核心は、自国データを国内で管理・活用する「主権AI」の確立です。政府主導でクラウド事業者に約5万基GPUを、民間企業には20万基以上を供給。単なるインフラ整備に留まらず、国家の産業構造そのものをAI中心に再設計する壮大な構想です。

民間ではサムスン、SK、現代がそれぞれ最大5万基、NAVERは6万基以上のGPUを導入し「AIファクトリー」を構築します。これにより、製造、モビリティ、通信、ロボティクスといった基幹産業のデジタルトランスフォーメーションを根本から推進する計画です。

各社の狙いは明確です。サムスン半導体製造のデジタルツイン化、現代は自動運転とスマートファクトリー、SKは製造AIクラウド、NAVERは特定産業向けAIモデルの開発を推進。NVIDIAの技術で各社の競争力を飛躍的に高めます。

提携GPU導入に限りません。LGなども参加し、韓国語LLMの開発や量子コンピューティング研究、次世代通信「6G」に向けたAI-RAN技術の共同開発も推進。AIを核とした包括的な技術エコシステムの構築を目指します。

未来の成長を支えるため、スタートアップ支援と人材育成も強化します。NVIDIA韓国内のスタートアップ連合を設立し、インフラへのアクセスやVCからの支援を提供。同時にAI人材育成プログラムも展開し、エコシステム全体の底上げを図ります。

今回の発表は、韓国が国を挙げて「AI産業革命」に乗り出す号砲です。ハードウェア導入からソフトウェア開発、人材育成まで包括的な国家戦略として展開されるこの取り組みは、世界のAI開発競争における韓国の地位を左右する一手となるでしょう。

TC Disrupt開幕、AIが医療とロボットの未来を拓く

巨大テックイベント開幕

1万人が集う世界最大級イベント
賞金10万ドルのピッチコンテスト

AIで挑むヘルスケア革命

AIと遺伝子治療で腎臓病に挑むNephrogen
AIでCTをPET画質に変換するRADiCAIT
診断・治療へのアクセス性向上

AIが物理世界を動かす

AIエージェントロボットを高速訓練
複雑な作業への迅速な適応を実現

10月27日、米サンフランシスコで世界最大級のテックカンファレンス「TechCrunch Disrupt 2025」が開幕しました。創業者投資家など1万人以上が集結し、技術の未来について議論を交わします。今年の最大の焦点はAIで、特にヘルスケアロボティクスといった物理世界への応用が注目を集めています。賞金10万ドルをかけたピッチコンテストでは、革新的なAIスタートアップが多数登場しました。

イベントのハイライトは、新進気鋭のスタートアップが競うピッチコンテスト「Startup Battlefield」です。今年は200社の中から選ばれたファイナリスト20社が、10万ドルの賞金をかけて自社の技術とビジネスモデルを披露します。投資家たちが熱い視線を送る中、AIを活用して社会の難題解決に挑む企業が目立ちました。

ヘルスケア分野では、AIと遺伝子治療を組み合わせるNephrogenが注目を集めています。同社は、特定の細胞に薬剤を届ける高精度なデリバリーシステムをAIで開発。これにより、これまで治療が困難だった多発性嚢胞腎(PKD)などの遺伝性腎臓病の根本治療を目指します。創業者の個人的な体験が開発の原動力となっています。

同じくヘルスケア分野のRADiCAITは、AIを用いてがん診断のあり方を変えようとしています。高価でアクセスが限られるPETスキャンを、より普及しているCTスキャンからAIで生成する技術を開発。これにより、診断のコストと患者の負担を大幅に削減し、地方などでも高度な診断を可能にすることを目指します。

ロボティクス分野では、Mbodiが革新的なアプローチを提示しました。自然言語で指示するだけで、複数のAIエージェントが協調してタスクを分解し、ロボットの動作を迅速に訓練するシステムを開発。これまで人手に頼らざるを得なかった複雑なピッキングや梱包作業の自動化を可能にします。

今年のDisruptで示されたのは、AIが単なる情報処理ツールから、物理世界と深く結びつき、現実の課題を解決する力へと進化した姿です。ヘルスケアや製造業など、様々な領域でビジネスの変革を迫られるでしょう。経営者やリーダーは、こうした最先端の動向を注視し、自社ビジネスへの応用可能性を探ることが不可欠です。

NVIDIA、ワシントンでAIの未来図を公開へ

GTCワシントンD.C.開催

10月27-29日に首都で開催
CEOジェンスン・フアン氏が基調講演
AIが変える産業・公共部門の未来
コンピューティングの未来図を提示

注目のセッション群

70以上の専門セッション
エージェントAIから量子計算まで
開発者政策決定者が交流
実践的なワークショップも充実

NVIDIAは、2025年10月27日から29日にかけて、米国の首都ワシントンD.C.で年次技術カンファレンス「GTC」を開催します。中心となるのは、28日正午(東部時間)に行われる創業者兼CEO、ジェンスン・フアン氏による基調講演です。この講演では、AIが産業、インフラ、公共部門をどのように再構築していくか、その未来図が示される見通しです。

今回のGTCは、単なる新製品発表の場にとどまりません。フアンCEOの基調講演は、コンピューティングの未来に関心を持つすべての人々にとって、時代の方向性を示す重要なマイルストーンとなるでしょう。AI技術が社会のあらゆる側面に浸透する中で、NVIDIAがどのようなビジョンを描いているのか、世界中の注目が集まっています。

基調講演以外にも、GTCは参加者に没入感のある体験を提供します。会期中には、エージェントAIやロボティクス、量子コンピューティング、AIネイティブ通信ネットワークなど、最先端のテーマを扱う70以上のセッションが予定されています。ハンズオン形式のワークショップやデモも充実しており、アイデアを形にする絶好の機会です。

このイベントは、技術開発者と政策決定者が一堂に会する貴重な場でもあります。ワシントンD.C.という開催地は、テクノロジーと政策の交差点としての意味合いを強く持ちます。AIの社会実装に向けたルール作りや協力体制の構築など、未来に向けた議論が活発に行われることが期待されます。

豪州「AI国家」へ、NVIDIAがエコシステムを主導

シドニーにAI関係者1000人集結

テーマは「ソブリンAI
生成AIやロボティクスなど最新技術を議論
大手銀やCanvaなど業界リーダーが参加

豪州AIエコシステムの急成長

スタートアップVCの連携加速
量子コンピューティング分野も活況
HPCやVFXの強みをAIに活用

NVIDIAは先週、オーストラリアのシドニーで「NVIDIA AI Day」を開催し、1000人以上の開発者や研究者、スタートアップが集結しました。イベントでは、各国が自国のデータを管理・活用する「ソブリンAI」をテーマに、生成AIやロボティクスなどの最新動向が議論されました。NVIDIAインフラ提供やパートナーシップを通じて、オーストラリアのAIエコシステム構築を強力に後押しし、同国をAI分野の世界的リーダーへと押し上げる構えです。

今回のイベントは、オーストラリアにおけるAIの可能性を明確に示しました。コモンウェルス銀行の最高情報責任者は「次世代のコンピュートがAIを牽引している」と述べ、NVIDIAが同国のAIエコシステム構築に貢献していることを高く評価。金融サービスから公共部門まで、幅広い業界でAIによるデジタルトランスフォーメーションが加速している現状が浮き彫りになりました。

エコシステムの中核を担う企業の動きも活発です。オーストラリア発のデザインプラットフォーム大手Canvaは、NVIDIAの技術を活用して数億人のユーザー向けに生成AIソリューションを開発している事例を紹介。同社のエンジニアリング担当シニアディレクターは「NVIDIAの技術を広範に活用し、AI機能をユーザーに提供している」と語り、具体的な協業の成果を強調しました。

未来の成長を担うスタートアップの育成にも力が注がれています。NVIDIAは今回、スタートアップベンチャーキャピタルVC)、パートナー企業を一堂に集めるネットワーキングイベントを初開催。量子コンピューティングや医療AIなど多様な分野の新興企業が登壇し、自社の技術を披露しました。地域のAI戦略を推進し、セクターを超えた協業を創出する絶好の機会となりました。

NVIDIAは、オーストラリアが持つ強みをAI時代の成長エンジンと見ています。同社の現地法人の責任者は「高性能コンピューティング(HPC)やVFXで培った専門知識と、活気ある量子・ロボティクス産業の融合が鍵だ」と指摘。強力な官民連携と世界クラスのインフラを武器に、オーストラリアAIによる経済発展の世界的リーダーになる未来像を描いています。

Google主催会議、AIが拓く未来の生産性を探る

世界のリーダー200人超が集結

Google主催の年次会議
カリフォルニア州で開催
ビジネス、科学、芸術の第一人者

AIが牽引する未来の生産性

AIによる生産性向上を議論
GoogleのAI量子研究所を公開
ロボティクス核融合も焦点

ヘルスケアから経済まで議論

CRISPRとAIによる医療革新
著名経済学者による経済討論

Googleは2025年10月22日、カリフォルニア州で年次会議「Zeitgeist 2025」を開催しました。18回目となる今回は、ビジネス、科学、技術、芸術の各分野から200人以上のグローバルリーダーが集結。AIを活用した生産性向上や、イノベーションを通じて地球規模の課題をいかに解決できるかについて、2日間にわたり活発な議論が交わされました。

会議の最大の焦点は、AIがもたらす未来の生産性でした。参加者はGoogleのAI量子研究所を視察したほか、ロボティクスや核融合エネルギーが次世代の成長を牽引する可能性について議論。未来の産業を形作る最先端技術の動向に、大きな関心が寄せられました。

ヘルスケア分野も重要な議題となりました。ゲノム編集技術CRISPR-Cas9の共同開発者であるジェニファー・ダウドナ氏らが登壇し、ゲノム編集とAIの融合がもたらす医療のブレークスルーについて議論。個別化医療や難病治療への応用が期待される革新的なアプローチが紹介されました。

経済やビジネスの未来に関するセッションも注目を集めました。著名な経済学者であるモハメド・エラリアン氏やマイケル・スペンス氏らが世界経済の動向を分析。また、ライフスタイルブランドの創設者マーサ・スチュワート氏とGoogleのCFOルース・ポラット氏が起業家精神について語り合いました。

この会議は、単なる技術カンファレンスではありません。富と目的、海洋保護といった多様なテーマが取り上げられ、分野を超えたアイデア交換とパートナーシップ構築の場となりました。Zeitgeistは、次なる時代精神を形作るための重要なフォーラムとしての役割を改めて示しました。

ヒューマノイド投資に警鐘、実用化への高い壁

立ちはだかる技術的な壁

人間の手のような器用さの習得
60自由度を超える複雑なシステム制御
デモはまだ遠隔操作の段階も

市場と安全性の現実

人間と共存する際の安全確保が課題
宇宙など限定的なユースケース
VCが懸念する不透明な開発計画

iRobot創業者のロドニー・ブルックス氏をはじめとする複数の専門家が、ヒューマノイドロボット分野への過熱投資に警鐘を鳴らしています。巨額の資金が投じられる一方、人間の手のような「器用さ」の欠如や安全性の懸念から、実用化はまだ遠いとの見方が大勢です。広範な普及には、少なくとも数年から10年以上かかると予測されています。

最大の課題は、人間の手のような繊細な動き、すなわち「器用さ」の習得です。ブルックス氏は、現在の技術ではロボットがこの能力を学習することは極めて困難であり、これができなければ実質的に役に立たないと指摘します。多くのデモは華やかに見えますが、実用レベルには達していないのが現状です。

人間と共存する上での安全性も大きな障壁です。ロボティクス専門のベンチャーキャピタルは、工場や家庭内でヒューマノイドが人に危害を加えるリスクを懸念しています。ロボットの転倒による事故や、ハッキングされて予期せぬ行動を取る危険性など、解決すべき課題は山積しています。

開発のタイムラインも不透明です。Nvidiaの研究者は、ヒューマノイド開発の現状をかつての自動運転車の熱狂になぞらえています。実用化までには想定以上に長い年月を要する可能性があり、これは投資家の回収サイクルとも合致しにくく、ビジネスとしての持続可能性に疑問を投げかけています。

期待の大きいテスラの「Optimus」でさえ、開発は遅れ、最近のデモでは人間が遠隔操作していたことが明らかになりました。高い評価額を受けるスタートアップFigureも、実際の配備数については懐疑的な目が向けられており、期待と現実のギャップが浮き彫りになっています。

もちろん、専門家ヒューマノイドの未来を完全に否定しているわけではありません。しかし、その登場は10年以上先であり、形状も人型ではなく車輪を持つなど、より実用的な形になる可能性が指摘されています。現在の投資ブームは、技術の成熟度を見誤っているのかもしれません。

ソフトバンク、54億ドルでABBロボティクス買収 Physical AIを新フロンティアに

Physical AIへの大型投資

買収額は約54億ドル(53.75億ドル)
買収対象はABBグループのロボティクス事業部門
孫正義CEO「次なるフロンティアはPhysical AI」
2026年中旬から下旬買収完了見込み

成長戦略「ASIと融合」を加速

AIチップ・DC・エネルギーと並ぶ注力分野
産業用ロボット分野での事業拡大を再加速
従業員約7,000人、幅広いロボット製品群を獲得
既存のロボティクス投資群との相乗効果を追求

ソフトバンクグループは10月8日、スイスの巨大企業ABBグループのロボティクス事業部門を約53.75億ドル(約8,000億円超)で買収すると発表しました。これは、孫正義CEOが掲げる次なる成長分野「Physical AI(フィジカルAI)」戦略を具現化する大型投資です。規制当局の承認を経て、2026年中旬から下旬に完了する見込みです。

今回の買収は、ソフトバンクが「情報革命」の次なるフェーズとしてAIに集中投資する姿勢を明確に示しています。孫CEOは、「Physical AI」とは人工超知能(ASI)とロボティクスを融合させることであり、人類の進化を推進する画期的な進化をもたらすと強調しています。過去の失敗例を超え、AIを物理世界に実装する試みを加速させます。

買収対象となるABBのロボティクス事業部門は、約7,000人の従業員を抱え、ピッキングや塗装、清掃など産業用途の幅広いロボット機器を提供しています。2024年の売上は23億ドルでしたが、前年比で減少傾向にありました。ソフトバンクは、この部門の販売を再活性化させ、成長軌道に乗せることを目指しています。

ソフトバンクは現在、ロボティクスを最重要視する四つの戦略分野の一つに位置づけています。残りの三分野は、AIチップ、AIデータセンターエネルギーです。この大型投資は、AIインフラ全体を支配し、ASIを実現するという孫氏の壮大なビジョン達成に向けた、重要な布石となります。

ソフトバンクはすでに、倉庫自動化のAutoStoreやスタートアップのSkild AI、Agile Robotsなど、様々なロボティクス関連企業に投資しています。今回のABB買収により、既存のポートフォリオとの相乗効果が期待されます。特に、高性能な産業用ロボット技術とAI知能を結びつけることで、競争優位性を確立する狙いです。

MITとMBZUAIが5年協定、AI基盤強化と地球課題解決へ

連携の核心

AIの基盤強化と応用促進
期間は5年間の国際共同研究

共同研究の重点領域

科学的発見の加速
人間の繁栄への貢献
地球の健康(持続可能性)

プログラム運営体制

研究資金はMBZUAIが支援
両大学から共同責任者を任命
研究成果はオープン公開を原則

マサチューセッツ工科大学(MIT)のシュワルツマン・コンピューティング・カレッジは、ムハンマド・ビン・ザーイド人工知能大学(MBZUAI、アラブ首長国連邦)との5年間にわたる共同研究プログラムを正式に開始しました。この連携は、AIの技術的基盤を強化するとともに、喫緊の科学的・社会的課題への応用を加速させることを目的としています。国際的なトップレベルの頭脳が結集し、次世代AIの方向性を定める動きとして注目されます。

本プログラムでは、教員や研究者、学生が連携し、主に三つの核となる領域で基礎研究を推進します。それは「科学的発見の加速」「人間の繁栄への貢献」、そして「地球の健康(環境問題や持続可能性)」です。MIT側は「AIが責任ある、包括的かつ世界的に影響力のある形で進化する」という共通のコミットメントを強調しています。

MBZUAIのエリック・シン学長は、この提携が「トランスコンチネンタル(大陸横断的)な発見の橋」を築くと述べています。AI専用の大学であるMBZUAIが持つ基盤モデル実世界への展開力と、MITが誇る計算科学と学際的なイノベーションの深さを融合させます。これにより、ブレークスルーが人間の健康改善やインテリジェント・ロボティクスなどに直結することが期待されます。

このプログラムは、AI科学を通じた進歩を専門とするアブダビ拠点のMBZUAIからの資金支援を受けて運営されます。毎年多数の共同プロジェクトが資金提供を受け、両大学から選出された運営委員会が研究テーマを決定します。さらに重要な点として、研究成果は原則としてオープンに公開可能であり、広範な知識共有を促進する方針です。

Google AI、コア製品を劇的進化 9月のChrome/Search/Gemini刷新まとめ

コア製品のAI統合

ChromeGeminiブラウジングアシスタント搭載
Searchにリアルタイム視覚検索(Search Live)導入
複雑な多段階質問に対応するAIモードの拡充
Android Gboardにトーン修正・文法校正AI

Geminiと次世代技術

カスタムAI「Gems」の共有機能でコラボを促進
Nano Bananaによる高度な画像生成・編集機能

Googleは2025年9月、AI技術を中核製品全体に深く統合し、利用者体験の劇的な向上を発表しました。これはChrome、Search、Geminiアプリといった主要サービスに留まらず、教育分野や次世代ロボティクスまで多岐にわたります。特に、生産性向上に直結する機能が多数リリースされており、AIを使いこなしたい経営者エンジニア層にとって見逃せないアップデートです。

ウェブブラウザと検索機能は、AIアシスタント化を加速させています。ChromeではGeminiがブラウジングアシスタントとして機能し、開いているタブ全体を横断して質問に回答可能です。また、SearchのAIモードは、複雑な多段階質問に対応するだけでなく、日本語を含む多言語対応を拡大し、グローバルでの利用を促進しています。

特に画期的なのは、Search Liveの導入です。これは、リアルタイムの音声会話にスマートフォンのカメラフィードを共有する機能を組み合わせ、現実世界の課題解決をリアルタイムで支援します。また、AndroidのGboardにはAIライティングツールが追加され、トーンの修正やスペル・文法の校正が端末内で自動で行えるようになり、モバイル生産性が向上しました。

GeminiアプリはAI活用ハブとしての地位を固めています。特に、特定の目的に合わせてカスタマイズしたAIモデル「Gems」の共有機能が追加され、チーム内での共同作業や情報共有が容易になりました。さらに、DeepMind開発の画像生成・編集モデル「Nano Banana」の活用が広がり、クリエイティブな作業の可能性を広げています。

学習領域では、AIが個々のユーザーに最適化された学習を実現します。NotebookLMは、利用者のメモに基づきフラッシュカードやクイズを自動生成し、パーソナライズされた学習ガイドを提供します。スンダー・ピチャイCEOはAI教育への10億ドルのコミットメントを強調し、「Gemini for Education」を全米の高校に提供すると発表しました。

長期的な視点では、Google DeepMindが「物理エージェント」の時代を宣言し、ロボティクスモデルを強化しました。Gemini Robotics 1.5/ER 1.5は、ロボットが環境を認識し、推論し、複雑なマルチステップタスクを処理する能力を飛躍的に高めます。また、Gemini 2.5が国際プログラミングコンテストで金メダル級の成績を収め、その推論能力を証明しています。

AI開発の主戦場、「ワールドモデル」へ移行加速

LLMの次なるフロンティア

LLMの性能向上に頭打ち感
物理世界を理解する新モデルに注目
動画ロボットデータから学習
GoogleMetaNvidiaが開発を主導

100兆ドル市場への期待と課題

自動運転やロボティクス進化を加速
製造・医療など物理領域への応用
Nvidia幹部が100兆ドル市場と試算
実現には膨大なデータと計算能力が壁

Google DeepMindMetaNvidiaなどの大手AI企業が、大規模言語モデル(LLM)の進歩が鈍化する中、次なる飛躍を求めて「ワールドモデル」の開発に注力し始めています。この新モデルは、言語データではなく動画ロボットデータから物理世界を学習し、人間環境への深い理解を目指します。これは機械による「超知能」実現に向けた新たなアプローチとして注目されています。

OpenAIChatGPTなどに代表されるLLMは、目覚ましい進化を遂げてきました。しかし、各社が投入する最新モデル間の性能差は縮小傾向にあり、開発に投じられる莫大な資金にもかかわらず、進歩に頭打ち感が見え始めています。この状況が、AI開発の新たな方向性を模索する動きを加速させているのです。

ワールドモデルは、LLMとは根本的に異なるアプローチを取ります。テキストデータから言語のパターンを学ぶLLMに対し、ワールドモデル動画シミュレーションロボットの動作データといった物理世界のデータストリームから学習します。これにより、現実世界の法則や因果関係を理解し、将来を予測する能力の獲得を目指します。

この技術が秘める経済的インパクトは計り知れません。Nvidiaの担当副社長であるレヴ・レバレディアン氏は、ワールドモデルが物理世界を理解し操作できるようになれば、その潜在市場は「本質的に100兆ドル」規模、つまり世界経済に匹敵する可能性があると指摘しています。

ワールドモデルは、自動運転車やロボティクス、いわゆる「AIエージェント」の進化に不可欠な一歩と見なされています。製造業やヘルスケアなど、物理的な操作を伴う産業での活用も期待されます。しかし、その実現には膨大なデータと計算能力が必要であり、依然として技術的に未解決の挑戦であることも事実です。

Meta、ロボットOSで覇権狙う AR級の巨額投資

ボトルネックはソフトウェア

ARに次ぐ数十億ドル規模投資
ハードウェアではなくソフトウェアが開発の鍵
器用な操作を実現するAIモデルが不可欠

「ロボット界のAndroid」構想

自社製ロボットMetabot」も開発
他社へソフトウェアをライセンス供与
プラットフォームで業界標準を狙う

専門家集団による開発体制

元Cruise CEOがチームを統括
MITなどからトップ人材を結集

Metaは、ヒューマノイドロボット開発を拡張現実(AR)に次ぐ大規模な投資対象と位置付けていることを明らかにしました。同社のアンドリュー・ボスワースCTOによると、数十億ドル規模を投じ、ハードウェアではなくソフトウェア開発に注力します。開発したプラットフォームを他社にライセンス供与する「ロボットAndroid」とも言える戦略で、急成長する市場の主導権を握る構えです。

なぜソフトウェアが重要なのでしょうか。ボスワース氏は「ハードウェアは難しくない。ボトルネックはソフトウェアだ」と断言します。ロボットがコップを絶妙な力加減で掴むといった器用な操作は極めて困難であり、この課題を解決するため、AIが現実世界をシミュレーションする「ワールドモデル」の構築が不可欠だと説明しています。

Metaの戦略は、自社でハードウェアを製造し販売することではありません。社内で「Metabot」と呼ばれるロボットを開発しつつも、その核心技術であるソフトウェアを他社ロボットメーカーに広くライセンス供与する計画です。これはGoogleAndroid OSでスマートフォン市場のエコシステムを築いた戦略と類似しており、オープンなプラットフォームで業界標準となることを目指します。

この野心的な計画を支えるのが、Metaが新設した「Superintelligence AI lab」です。このAI専門組織がロボティクスチームと緊密に連携し、ロボット知能を司るAIモデルを開発します。ボスワース氏は「このAIラボがなければ、このプロジェクトは実行しなかった」と述べ、AI開発能力が自社の最大の強みであるとの認識を示しました。

このアプローチは、テスラが開発する「Optimus」とは一線を画します。ボスワース氏は、人間の視覚を模倣してデータを集めるテスラの手法について「ロボット用のデータをどうやって十分に集めるのか疑問だ」と指摘。Metaシミュレーションワールドモデルを駆使して、このデータ問題を解決しようとしています。

Metaの本気度は、集結した人材からも伺えます。自動運転企業Cruiseの元CEOであるマーク・ウィッテン氏がチームを率い、MITから「現代最高の戦術ロボット工学者」と評されるキム・サンベ氏を招聘。社内のトップエンジニアも結集させ、盤石な体制でこの巨大プロジェクトに挑みます。

アリババ、NVIDIAと提携し物理AI開発基盤を導入

中国の電子商取引大手アリババは24日、米半導体大手NVIDIAとの提携を発表しました。NVIDIAが提供するロボットや自動運転向けの物理AI開発ツールを、自社のAIクラウドプラットフォームに統合します。この提携は、物理世界で動作するAIの開発を加速させることが目的です。 具体的には、NVIDIAの「Physical AI」ソフトウェアスタックを顧客に提供します。これにより開発者は、現実世界の環境を忠実に再現した3Dのデジタルツインを構築できます。この仮想空間で生成された合成データを用いることで、AIモデルを効率的かつ安全に訓練することが可能になります。 この技術は、特にロボティクスや自動運転車、スマート工場、倉庫といった分野での活用が期待されています。現実世界でのテストが困難または危険なシナリオでも、仮想環境でAIを訓練できるため、開発サイクルが大幅に短縮される可能性があります。 今回の提携は、AI事業を強化するアリババの戦略の一環です。同社はAI技術への投資を従来の500億ドルの予算を超えて拡大すると表明。ブラジルやフランスなどでデータセンターを新設し、世界91拠点にまでインフラを拡大する計画も明らかにしました。 アリババは同日、最新の大規模言語モデル(LLM)「Qwen 3-Max」も発表しました。1兆パラメータで訓練されたこのモデルは、同社史上最大かつ最も高性能とされ、特にコーディングやAIエージェントとしての活用に適していると主張しています。 一方のNVIDIAも、AI分野で積極的な投資を続けています。最近ではインテルへの50億ドルの出資や、OpenAIへの最大1000億ドルの投資計画を発表しており、AIエコシステムにおける影響力を一層強めています。

ロボットデータ基盤Alloy、約300万ドル調達で市場開拓

オーストラリアスタートアップAlloyは23日、ロボットが生成する膨大なデータを管理するインフラ開発のため、約300万ドル(約4.5億豪ドル)をプレシードラウンドで調達したと発表しました。このラウンドはBlackbird Venturesが主導しました。同社は、自然言語でデータを検索し、エラーを発見するプラットフォームを提供することで、ロボティクス企業の開発効率向上を目指します。今後は米国市場への進出も計画しています。 あなたの会社では、ロボットが生成する膨大なデータをどう管理していますか。ロボットは1台で1日に最大1テラバイトものデータを生成することがあります。カメラやセンサーから常にデータが送られるためです。多くの企業は、この膨大なデータを処理するために既存のツールを転用したり、内製ツールを構築したりしており、非効率なデータ管理が開発の足かせとなっています。 Alloyは、ロボットが収集した多様なデータをエンコードし、ラベル付けします。利用者は自然言語でデータを検索し、バグやエラーを迅速に特定できます。ソフトウェア開発の監視ツールのように、将来の問題を自動検知するルールを設定することも可能で、開発の信頼性向上に貢献します。これにより、エンジニアは数時間に及ぶデータ解析作業から解放されるのです。 創業者のジョー・ハリスCEOは、当初農業用ロボット企業を立ち上げる予定でした。しかし、他の創業者と話す中で、業界共通の課題がデータ管理にあると気づきました。自身の会社のためにこの問題を解決するよりも、業界全体のデータ基盤を整備する方が重要だと考え、2025年2月にAlloyを設立しました。 Alloyは設立以来、オーストラリアロボティクス企業4社とデザインパートナーとして提携しています。今回の調達資金を活用し、年内には米国市場への本格的な進出を目指します。まだ直接的な競合は少なく、急成長するロボティクス市場で、データ管理ツールのデファクトスタンダードとなることを狙っています。 ハリス氏は「今はロボティクス企業を設立するのに最高の時代だ」と語ります。同氏は、今後生まれるであろう数多くのロボティクス企業が、データ管理という「車輪の再発明」に時間を費やすことなく、本来のミッションに集中できる世界を目指しています。このビジョンが投資家からの期待を集めています。

OpenAI、人型ロボット開発を強化 AGI競争の新局面へ

AI開発をリードするOpenAIが、AGI(汎用人工知能)実現に向けた次の一手として人型ロボット開発を本格化させています。同社は最近、人型ロボット向けAIシステムの専門研究者の採用を開始しました。これは、物理世界でタスクを実行する能力がAGI開発の鍵になるとの認識が業界で高まっていることを示唆します。TeslaやFigure AIなど先行企業との競争が激化しそうです。 なぜ今、人型ロボットなのでしょうか。その理由は、ロボットが人間用に設計された環境で活動できる点にあります。階段を上るなど物理的なタスクを通じた学習が、より高度な知能の獲得につながると考えられています。文章生成は得意でも「コーヒーを淹れる」ことができない現在のAIの限界を超える狙いです。 OpenAIは2021年にロボティクス部門を一度閉鎖しましたが、再びこの分野に注力し始めました。AIの次なるブレークスルーとして、物理世界を理解する「ワールドモデル」の構築が重要視されています。ロボット開発はその鍵を握るプロジェクトと位置づけられているのです。 人型ロボット市場では、すでに多くの企業が開発競争を繰り広げています。TeslaやFigure AI、Boston Dynamicsなどが有力なプレイヤーです。中国のUnitreeは低コストなロボットで市場に参入。OpenAIは先行するハードウェア企業に対し、得意のAIアルゴリズムで優位性を築く戦略です。 人型ロボット市場は2050年までに5兆ドル規模に達するとの予測もあり、期待が高まっています。しかし、SNSで目にする見事なデモ動画は、特定の条件下でしか成功しない場合も少なくありません。未知の環境で安定して動作する信頼性の確保が、実用化に向けた最大の課題と言えるでしょう。 実用化はまず、工場や倉庫といった産業現場から進む見通しです。Amazonは倉庫内で、現代自動車は工場で人型ロボットの試験導入を開始しています。危険で単調な作業の代替が主な目的です。各家庭で活躍する「ロボット執事」の実現はまだ先になりそうです。 今後の技術的な焦点は、ハードとソフトの両面にあります。人間の手のように繊細な作業をこなすハードウェアは依然として難題です。また、未知の状況にも対応できる汎用的なAIモデルも欠かせません。AIの「幻覚」が物理世界で起きないよう、安全性と信頼性の確保が最優先されます。

ロボットの安全性向上へ 3D超音波センサー「ADAR」が6億円調達

新世代の<span class='highlight'>知覚技術</span>

人間空間に進出するロボット安全確保
高周波音波(ADAR)による3D空間把握
LiDARより安価かつ高性能な代替策

LiDARとの<span class='highlight'>優位性</span>

レーザー点状測定に対し空間全体を充填
カメラの弱点を補う高精度な深度知覚
業界標準フォーマットで多様なシステムに連携

<span class='highlight'>市場からの評価</span>

ロボティクス産業安全分野で需要拡大
スケールアップに向け600万ドル調達完了

Sonairは、ロボットの安全性向上を目的とした3D超音波センサー「ADAR (Acoustic Detection and Ranging)」の開発資金として、600万ドル(約9億円超)を調達しました。このオスロ拠点のスタートアップは、従来のLiDAR技術よりも安価かつ包括的に環境を認識できるソリューションを提供し、人間と協働するロボットの普及を加速させます。

ADARセンサーは、高周波の超音波を発信し、その反響を捉えることで周囲の3次元データを取得します。共同創業者兼CEOのサンドヴェン氏は、LiDARがレーザー点状測定であるのに対し、「部屋全体を音で満たす」イメージだと説明し、より信頼性の高い深度知覚を実現します。

ロボットの知覚は通常、カメラに大きく依存しますが、カメラは悪条件下での物体検出に課題があります。ADARは、他のセンサーやカメラでは捉えきれない、高精度な深度情報を提供することで、ロボットのオペレーティングシステムが環境をより正確に把握する手助けをします。

Sonairは今年初めにセンサーをリリースして以来、ロボティクス分野から強い需要を受けています。複数の企業が次期モデルへの組み込みを計画するほか、産業安全セクターでの活用も開始。重機エリアへの侵入者を検知し、自動で機械を停止させる安全対策に貢献しています。

自動運転車の初期と同様に、人型ロボットヒューマノイド)の普及に伴い、安全性が最大の懸念事項となることが確実視されています。投資家たちはこの課題を理解しており、Sonairはカメラのように全てのロボットに搭載される標準センサーとなることを目指しています。

NVIDIAが英国の「AIメーカー」戦略を加速 物理AI・創薬・ロボティクス分野で広範に連携

英国の国家AI戦略を支援

英国のAI機会行動計画を後押し
世界クラスの計算基盤への投資
AI採用を全経済分野で推進
AIユーザーでなくAIメーカーを目指す

重点分野での協業事例

スパコンIsambard-AI」で基盤構築
ロボティクス:自律走行、製造、ヒューマノイド開発
ライフサイエンス:AI創薬デジタルツインを活用

NVIDIA英国のAIエコシステムとの広範なパートナーシップを強調し、英国の国家戦略である「AIメーカー」としての地位確立を強力に支援しています。ジェンスン・ファンCEOの英国訪問に際し、物理AI、ロボティクス、ライフサイエンス、エージェントAIなど最先端領域における具体的な協業事例が公表されました。

英国のAI基盤強化の核となるのは、NVIDIA Grace Hopper Superchipsを搭載した国内最速のAIスーパーコンピューター「Isambard-AI」です。これにより、公的サービスの改善を目指す独自の多言語LLM(UK-LLM)や、早期診断・個別化医療に向けた医療基盤モデル(Nightingale AI)など、重要な国家プロジェクトが推進されています。

特に物理AIとロボティクス分野での応用が加速しています。Extend Roboticsは製造業向けに安全なロボット遠隔操作システムを開発。Humanoid社は倉庫や小売店向けの汎用ヒューマノイドロボットを開発しており、いずれもNVIDIAのJetsonやIsaacプラットフォームが活用されています。

ライフサイエンス分野では、AIによる創薬の加速が目覚ましいです。Isomorphic LabsはAI創薬エンジンを構築し、英国CEiRSIはNVIDIA技術を用いて複雑な患者のデジタルツインを作成。これにより、大規模かつ多様な患者集団に対する新しい治療法のテストを可能にしています。

エージェントAIおよび生成AIのイノベーションも活発です。Aveniは金融サービスに特化したLLMを開発し、コンプライアンスを確保しながら顧客対応やリスク助言を行うエージェントフレームワークを構築しました。ElevenLabsやPolyAIは、超リアルな音声生成や、大規模な顧客サポート自動化を実現しています。

また、AIスキルギャップ解消への取り組みも重要です。技術ソリューションプロバイダーのSCANは、NVIDIA Deep Learning Instituteと連携し、コミュニティ主導型のトレーニングプログラムを展開しています。これにより、英国全土でAIや専門的なワークロードに対応できる人材育成が進められています。

Hugging Face、ロボット学習用データの大規模ストリーミングに対応

V3.0の主要機能

数百万エピソード対応のスケーラビリティ向上
大容量データをダウンロード不要で処理可能
複数エピソードを単一ファイルに集約(ファイル数削減)
関係メタデータによるエピソード単位の検索

ロボティクスデータ対応

センサー運動、複数カメラフィードなどに対応
PyTorchとのシームレスな統合
時系列データを扱うためのネイティブなウィンドウ操作
実機からシミュレーションまで広範にサポート

Hugging Faceは、ロボット学習向けデータセットフォーマット「LeRobotDataset:v3.0」をリリースしました。これは、数百万エピソードに及ぶ超大規模なロボティクスデータの取り扱いを根本的に改善するものです。旧バージョンで課題だったファイルシステムの制約を克服し、大容量データをディスクにダウンロードせずに処理できるストリーミング機能にネイティブ対応しました。この進化は、ロボティクス分野におけるAI学習の民主化を大きく加速します。

V3.0の最大の設計上の変更点は、スケーラビリティの確保です。従来、エピソードごとにファイルを保存していたため、エピソード数が増加するとファイルシステムに過大な負荷がかかっていました。新フォーマットでは、複数のエピソードを単一のファイルに集約し、リレーショナルメタデータを用いてエピソード単位の情報を効率的に検索します。これにより、大規模データセットの管理が大幅に簡素化されました。

新たに導入されたストリーミング機能は、ロボット学習のアクセシビリティを劇的に向上させます。専用の`StreamingLeRobotDataset`インターフェースを利用することで、ユーザーはテラバイト級のデータをローカルにダウンロードすることなく、Hugging Face Hubから直接データバッチをオンザフライで処理できます。これは、特にリソースが限られた環境での研究開発に貢献します。

データは効率的な構造で保存されます。低次元のセンサーデータやアクションはApache Parquetファイルに、大量のカメラ映像はMP4ファイルに連結・エンコードされます。また、本フォーマットはHugging FaceとPyTorchのエコシステムに統合されており、ロボット学習特有の時系列データのウィンドウ処理(過去の観測のスタック)をネイティブにサポートしている点も特徴的です。

OpenAI、AGIへ「人型ロボットAI」開発を急加速

AGI実現への新経路

AGI実現へ物理世界での行動を重視
LLMの限界を認め新たな研究領域へ移行
人型ロボットAIの汎用化を目標に設定

開発体制と技術基盤

人型ロボット研究の専門家を積極採用
遠隔操作とシミュレーションで訓練
Nvidia Isaacなど開発環境を導入

ハード開発の可能性

試作・構築経験を持つ機械エンジニアを募集
量産化を視野に入れたハードウェア設計を示唆

OpenAIAGI(汎用人工知能)達成に向け、ロボティクス研究を本格的に再加速させています。特に、物理世界との相互作用を可能にする人型ロボットAIの開発に注力するため、スタンフォード大学などから専門家を積極的に採用していることが明らかになりました。これは、既存のLLMモデルの限界を超え、AIを次の段階へ進めるための戦略的な転換です。

同社は、AGIを実現するには、単なる対話や推論能力だけでなく、現実世界でタスクを実行できるアルゴリズムが必要だと判断しました。このため、大規模言語モデル(LLM)の発展がピークに達しつつあると見て、物理的な感覚や運動制御を伴う新たな研究分野に焦点を移しています。

採用された研究者たちは、人型や部分的に人型をしたロボットを制御するAIアルゴリズム開発の専門家です。求人情報からは、ロボットを人間が操作し、その動きをAIが学習するテレイグジスタンス(遠隔操作)シミュレーションを用いた訓練システムの構築を進めていることが分かります。

具体的には、ロボット訓練に広く使われるNvidia Isaacなどの仮想物理環境シミュレーション技術の専門知識が求められています。これにより、現実世界での試行錯誤コストを削減しつつ、AIが複雑な環境に適応する能力を効率的に獲得することが期待されます。

OpenAIが自社でロボットを製造するか、既存のハードウェアを活用するかは不明確です。しかし、求人には、センサー付きロボットシステムの試作・構築経験を持つ機械エンジニアの募集があり、量産(100万台以上)を前提とした設計経験も要求されており、ハードウェアへの深い関与を示唆しています。

このロボティクスへの再参入は、競争が激化する市場への挑戦です。すでにFigureやAgilityなどのスタートアップに加え、テスラやGoogleといった巨大AI企業も人型ロボット開発に大規模な投資を行っています。現時点では、OpenAI「魔法のような優位性はない」との指摘もあり、今後の技術開発競争に注目が集まっています。