コンテキスト(LLM技術)に関するニュース一覧

AI開発、コストより速度優先の潮流

開発現場の新たな常識

計算コストより展開速度を重視
課題は遅延・柔軟性・容量
迅速な実験が競争優位の源泉

先進企業の具体事例

食品宅配Wonder社はクラウド容量を懸念
バイオ企業Recursion社はハイブリッド基盤で対応
オンプレミスは10倍安価な例も

経営者が持つべき視点

予算策定は科学より芸術
複数年の投資コミットが不可欠
コスト懸念は革新を阻害する

AI開発の最前線で、企業の優先順位が変化しています。米国の食品宅配「Wonder」やバイオテクノロジー企業「Recursion」などの先進企業は、AIの計算コストよりも、展開速度や遅延、柔軟性、処理容量といった課題を重視。コストを理由に導入をためらうのではなく、いかに速く、持続的にAIを事業展開できるかが、新たな競争力の源泉となりつつあります。

この潮流を象徴するのが、Wonder社の事例です。同社のAI利用コストは、1注文あたり数セントと事業全体から見ればごく僅か。しかし、急成長に伴い、当初「無制限」と想定していたクラウドの処理容量が逼迫し始めました。予想より早くインフラ増強の必要性に迫られており、コストよりも物理的な制約が大きな経営課題となっています。

Wonder社にとって、AI関連の予算策定は「科学というより芸術」に近いと言います。新しいモデルが次々と登場するため、予測が困難なためです。特に、大規模モデル利用時のコストの50〜80%は、リクエストごとに同じ情報を再送信する「コンテキスト維持」に費やされることも。常に変化する状況下で、柔軟な予算執行と技術活用のバランスが求められます。

一方、Recursion社はハイブリッドインフラでこの課題に対応しています。同社は数年前に自社でGPUクラスタを構築。クラウド事業者が十分な計算資源を供給できなかったためですが、結果的にこれが功を奏しました。現在も大規模なモデル学習はオンプレミスで、比較的小さな推論などはクラウドで実行するなど、柔軟な使い分けを実現しています。

コスト面でも、このハイブリッド戦略は有効です。Recursion社によれば、大規模なワークロードをオンプレミスで処理する場合、クラウドに比べて「控えめに見積もっても10倍は安価」になるとのこと。5年間の総所有コスト(TCO)では半額に抑えられるケースもあるようです。もちろん、小規模な利用であればクラウドの方がコスト競争力があります。

両社の事例から見えてくるのは、経営層の心理的なコミットメントの重要性です。Recursion社のCTOは「計算資源への投資をためらうと、チームはクラウド費用を恐れてリソースを使わなくなり、結果としてイノベーションが阻害される」と警鐘を鳴らします。AI時代を勝ち抜くには、コストを管理しつつも、革新を止めないための大胆な投資判断が不可欠です。

Google、教育AI戦略を強化 NotebookLMに新機能

学習支援AI NotebookLM

自分の資料からクイズを自動生成
重要語句のフラッシュカード作成
トピックや難易度をカスタマイズ可能
モバイルアプリでいつでも学習

Googleの教育AI戦略

教師代替せず支援する
深い理解と好奇心を促進
不正行為など倫理的課題へも配慮
Geminiモデルでチャット機能も強化

Googleは2025年11月6日、教育分野におけるAI活用戦略を公表し、AI搭載ノートアプリ「NotebookLM」に新機能を追加しました。このアップデートは、世界的な教員不足や教育格差という課題に対し、AIを用いて学習効果とエンゲージメントを高めることを目指すものです。最新のGeminiモデルを活用し、学習者に個別最適化された支援を提供します。

今回のアップデートの目玉は、ユーザーが持つ資料からクイズやフラッシュカードを自動生成する機能です。PDFやテキストなどの学習素材をアップロードするだけで、AIが内容を解析し、理解度を確認するための問題や、暗記用のカードを作成。学習者はトピック、難易度、問題数を自由にカスタマイズでき、効率的な知識定着が期待できます。

NotebookLMは、基盤となるチャット機能も大幅に強化されました。最新のGeminiモデルを搭載することで、応答品質が50%向上し、一度に扱える情報量(コンテキストウィンドウ)は4倍に拡大。これにより、より長く複雑な対話が可能となり、思考のパートナーとして高度な学習をサポートします。

Googleは、AIを単に答えを提示するツールではなく、学習者が深い理解に至るプロセスを支援するものと位置づけています。同社の目標は、AIによって教師を代替することではなく、むしろ教師が授業計画や事務作業から解放され、生徒一人ひとりへの指導に集中できる環境を創出することです。

一方で、同社はAI導入に伴う課題にも真摯に向き合っています。不正行為や情報格差、AIの回答の正確性といった問題に対し、教育コミュニティと連携して解決策を模索。AIリテラシーの向上を支援するとともに、AIでは代替しにくい討論やポートフォリオといった新しい評価方法の導入も視野に入れています。

Copilot CLI登場、ターミナル作業をAIで高速化

ターミナルでAIと対話

ターミナル上でAIと対話
自然言語でコマンドを生成
スクリプト作成やコード修正
作業フローを中断しない効率性

多彩なユースケース

Git操作やPR作成の自動化
環境設定スクリプトの作成
ドキュメントの自動生成
不明なコマンドの自然言語解説

GitHubは、コマンドラインインターフェース(CLI)上でAIアシスタント機能を利用できる「GitHub Copilot CLI」を公開しました。これにより、開発者はターミナルから離れることなく、自然言語でコマンド生成、スクリプト作成、コード修正などが可能になります。作業の文脈を維持したまま、開発ワークフロー生産性を飛躍的に向上させることが期待されます。

Copilot CLIは、対話形式でタスクを依頼するインタラクティブモードと、単発のプロンプトで応答を得るプログラムモードを提供します。これまでIDEやブラウザで行っていたAIとのやり取りをターミナルに集約することで、コンテキストスイッチの削減集中力の維持に貢献します。

利用するには、Node.js環境で簡単なコマンドを実行するだけです。ただし、この機能はGitHub Copilot有料プラン(Pro、Business、Enterpriseなど)契約者向けの提供となります。組織で利用する場合は、管理者がCLIポリシーを有効化する必要があるため注意が必要です。

セキュリティも考慮されています。Copilot CLIがファイルの読み取りや変更、コマンド実行を行う前には、必ずユーザーに確認を求めます。作業ディレクトリを信頼済みとして登録するオプションもありますが、ユーザーが常に操作の主導権を握れる設計になっており、安心して利用できます。

活用例は多岐にわたります。Gitの複雑なコマンド提案、新規プロジェクトの環境設定スクリプト生成、既存コードのドキュメント作成、さらには不明なコマンドを自然言語で解説させることも可能です。これにより、開発者の学習コスト削減にも貢献するでしょう。

Copilot CLIは現在パブリックプレビュー段階にあり、GitHubはユーザーからのフィードバックを求めています。開発の中心であるターミナルでAIを活用することで、コーディング体験そのものが大きく変わる可能性があります。今後の機能拡充にも大いに期待が寄せられます。

AIエージェントの弱点露呈、マイクロソフトが実験場公開

AI市場シミュレータ公開

マイクロソフトが開発・提供
名称はMagentic Marketplace
AIエージェントの行動を研究
OSSとして研究者に公開

判明したAIの主な脆弱性

選択肢過多で性能が低下
意図的な情報操作に弱い
応答順など体系的な偏りも露呈

マイクロソフトは2025年11月5日、AIエージェントの市場行動を研究するためのシミュレーション環境「Magentic Marketplace」をオープンソースで公開しました。アリゾナ州立大学との共同研究で、GPT-5など最新モデルをテストした結果、選択肢が多すぎると性能が落ちる「選択のパラドックス」や、意図的な情報操作に対する深刻な脆弱性が明らかになりました。

今回の実験で最も驚くべき発見の一つは、AIエージェントが「選択のパラドックス」に陥ることです。選択肢が増えるほど、より良い結果を出すと期待されるのとは裏腹に、多くのモデルで消費者利益が低下しました。例えばGPT-5は、選択肢が増えると性能が最適値の2000から1400へ大幅に低下。これは、AIが持つコンテキスト理解の限界を示唆しています。

さらに、AIエージェントは情報操作に対しても脆弱であることが判明しました。偽の権威付けや社会的証明といった心理的戦術から、悪意のある指示を埋め込むプロンプトインジェクションまで、様々な攻撃をテスト。その結果、GPT-4oなどのモデルは、操作した事業者へ全ての支払いを誘導されてしまうなど、セキュリティ上の重大な懸念が浮き彫りになりました。

実験では体系的な偏り(バイアス)も確認されました。一部のオープンソースモデルは、検索結果の最後に表示された事業者を優先的に選択する「位置バイアス」を示しました。また、多くのモデルが最初に受け取った提案を安易に受け入れる「提案バイアス」を持っており、より良い選択肢を見逃す傾向がありました。こうした偏りは、市場の公正性を損なう恐れがあります。

「Magentic Marketplace」は、こうした複雑な問題を安全に研究するために開発されたプラットフォームです。現実世界では難しい、多数のエージェントが同時に相互作用する市場をシミュレートし、消費者保護や市場効率、公平性といった課題を検証できます。マイクロソフトは、この環境を研究者に開放することで、AIが社会に与える影響の解明を加速させたい考えです。

今回の研究結果は、AIエージェントの実用化にはまだ多くの課題があることを示しています。特に、重要な意思決定をAIに完全に委ねるのではなく、人間が監督する「ヒューマン・イン・ザ・ループ」の仕組みが不可欠です。企業がAIエージェントを導入する際には、こうした脆弱性を十分に理解し、対策を講じる必要があります。今後の研究開発の焦点となるでしょう。

グーグル、AI開発基盤を刷新 観測・統制を強化

エージェント開発を高速化

最先端のコンテキスト管理
自己修復機能付きプラグイン提供
開発キットでGo言語を追加サポート
ワンクリックでの本番環境移行

本番運用のガバナンス強化

観測ダッシュボードで稼働監視
エージェントIDによる監査証跡の明確化
プロンプト注入などを防ぐ新機能
パフォーマンスを事前評価する機能

Google Cloudは2025年11月5日、AI開発プラットフォーム「Vertex AI」の中核をなす「Agent Builder」の大規模アップデートを発表しました。この更新は、企業がAIエージェントの構想から設計、展開までをより迅速かつ安全に行えるようにするものです。主な特徴は、開発プロセスを加速する新ツール群と、本番運用に不可欠なガバナンス機能を大幅に強化した点にあります。

開発の高速化は、今回のアップデートの大きな柱です。最先端のコンテキスト管理レイヤーや、失敗したタスクを自己修復する事前構築済みプラグインを導入。開発キット(ADK)はPythonやJavaに加え、新たにGo言語をサポートしました。さらに、コマンド一つでローカル環境からテスト環境へ移行できる「ワンクリックデプロイ」機能も提供します。

同時に、企業利用で必須となるガバナンス機能も大幅に拡充されました。新たに導入された観測可能性ダッシュボードでは、トークン消費量やエラー率などを本番環境で追跡できます。また、エージェントに固有のIDを付与して監査証跡を明確にする機能や、プロンプトインジェクションを防ぐ「Model Armor」も搭載されました。

この観測可能性ダッシュボードは、開発者にとって強力なツールとなるでしょう。本番環境で稼働するエージェントトークン消費量、エラー率、レイテンシー(遅延)を可視化し、問題が発生した際の原因特定と再現を容易にします。これにより、クラウドベースでの本番監視が格段に効率化され、安定した運用が可能になります。

Google CloudがAgent Builderの強化を急ぐ背景には、熾烈な開発者獲得競争があります。OpenAIの「AgentKit」やマイクロソフトの「Azure AI Foundry」、AWSの「Bedrock」など、競合他社もAIエージェント開発基盤の機能拡充を競っています。今回のアップデートは、自社エコシステム内に開発者を留め、競争優位性を確保するための戦略的な一手と言えるでしょう。

GitHub、AI開発ハブへ。MSのプラットフォーム戦略

Agent HQ構想

AIエージェント向けプラットフォーム
開発エコシステム中心地を維持
外部ツールを統合するオープンな思想

参画する主要プレイヤー

OpenAIAnthropicが初期参加
Google、Cognition、xAIも追随

開発手法の進化

人間は仕様定義や創造に集中
実装はAIエージェントが代行
ツール間のコンテキスト共有を実現

マイクロソフトは、開発者向けイベント「GitHub Universe」で、AIコーディングエージェントのハブとなる新機能「Agent HQ」を発表しました。これはGitHubを単なるコード置き場から、多様なAIが協働する中心的なプラットフォームへと進化させ、開発エコシステムにおける主導権を維持する狙いです。

「Agent HQ」は、OpenAIAnthropicGoogleなどの外部AIコーディングアシスタントGitHubエコシステムに接続するものです。特定のツールに開発者を囲い込むのではなく、オープンなプラットフォームとして開発の中心地であり続けるための戦略と言えるでしょう。

この動きの背景には、開発ワークフロー全体を自動化する「Cursor」のような競合ツールの台頭があります。単なるコード補完から自律的なエージェントへとAIの役割が進化する中、迅速に対応しなければ市場での優位性を失うという危機感がうかがえます。

GitHubの幹部は「人間は仕様定義や創造的なプロセスに集中し、実装はAIエージェントに委ねる時代になる」と語ります。開発者はもはや、個々のツールでコンテキストを再構築する必要がなくなり、より高付加価値な業務に専念できるようになるのです。

この戦略は、マイクロソフトのAI事業全体にとっても極めて重要です。同社はGitHubをAIアプリケーション構築の中核に据えており、「Agent HQ」によって開発者の作業とデータを自社エコシステム内に留め、AI時代の覇権を確固たるものにしようとしています。

自律型AI導入、コンテキストエンジニアリングが鍵

自律型AIの課題と未来

信頼性の高い応答にコンテキストが必須
企業データは様々な場所に散在
2026年までに大企業の6割が導入予測

Elasticが示す解決策

AIに必要なデータとツールを提供
新機能Agent Builderで開発を簡素化
専門知識不要でAIエージェント構築

自律的に思考し業務を遂行する「自律型AI」の導入が企業で加速する中、その信頼性を担保する鍵として「コンテキストエンジニアリング」が注目されています。検索・分析プラットフォーム大手のElastic社は、企業の散在するデータをAIに的確に与えるこの技術が不可欠だと指摘。同社が提供する新機能「Agent Builder」は、専門家でなくとも自社のデータに基づいた高精度なAIエージェントの構築を可能にします。

自律型AIの性能は、与えられるコンテキストの質に大きく依存します。しかし多くの企業では、必要なデータが文書、メール、業務アプリなどに散在しており、AIに一貫したコンテキストを提供することが困難です。Elastic社の最高製品責任者ケン・エクスナー氏は、この「関連性」の問題こそが、AIアプリケーション開発でつまずく最大の原因だと指摘しています。

市場は急速な拡大期を迎えています。調査会社Deloitteは、2026年までに大企業の60%以上が自律型AIを本格導入すると予測。またGartnerは、同年末までに全企業向けアプリの40%がタスク特化型エージェントを組み込むと見ています。競争優位性の確保や業務効率化に向け、各社は実験段階から本格的な実装へと舵を切っており、導入競争は待ったなしの状況です。

この課題を解決するのが、適切なコンテキストを適切なタイミングでAIに提供する「コンテキストエンジニアリング」です。これは、AIが正確な応答をするために必要なデータを提供するだけでなく、そのデータを見つけて利用するためのツールやAPIをAI自身が理解する手助けをします。プロンプトエンジニアリングやRAG(検索拡張生成)から一歩進んだ手法として注目されています。

Elastic社はこの潮流に対応し、Elasticsearchプラットフォーム内に新機能「Agent Builder」を技術プレビューとして公開しました。これは、AIエージェントの開発から実行、監視までライフサイクル全体を簡素化するものです。ユーザーは自社のプライベートデータを用いてツールを構築し、LLMと組み合わせて独自のAIエージェントを容易に作成できます。

コンテキストエンジニアリングは、高度な専門知識がなくとも実践できる一方、その効果を最大化するには技術と経験が求められ、新たな専門分野として確立されつつあります。今後はLLMが訓練データに含まれない企業固有のデータを理解するための新しい技術が次々と登場し、AIによる自動化と生産性向上をさらに加速させると期待されています。

Pixel Watch 4の新機能、AIでスマホから解放

手首を上げるだけのAI起動

Hey Google不要音声操作
ハンズフリーで即座にタスク実行
移動中や運動中でもシームレス連携

気の利くパーソナルアシスタント

アイデアや情報を音声でメモ
メールや地図と連携し状況を把握
個人情報を記憶させタスクを自動化
カレンダー登録やリマインダー設定

Googleは、最新スマートウォッチ「Pixel Watch 4」に搭載されたAI「Gemini」の活用事例を公開しました。新機能「Raise to Talk」は、手首を上げて話すだけでAIを起動でき、スマートフォンを取り出すことなく、スケジュール管理や情報検索、メッセージ送信などをシームレスに実行します。多忙なビジネスパーソンが、いかにしてAIを日常業務に取り入れ、生産性を向上させられるかを示す好例と言えるでしょう。

新機能の最大の特長は、「Hey Google」というウェイクワードが不要な点です。ユーザーはただ手首を口元に近づけて話すだけで、即座にGeminiとの対話を開始できます。これにより、会議中や移動中、両手がふさがっている状況でも、思考を中断することなくタスクを実行したり、アイデアをメモしたりすることが可能になります。まさに「思考の速度で動くAI」と言えるでしょう。

記事では、交通渋滞に巻き込まれた際に、Geminiがメールから目的地の住所を検索し、Googleマップの交通情報と連携して到着予定時刻をリアルタイムで算出した事例が紹介されています。さらに、遅刻を伝えるメッセージの作成・送信までを音声操作だけで完結。このような機能は、分刻みで動くビジネスパーソンの強力な武器となり得ます。

Geminiは、ユーザーの個人的な情報や好みを記憶する「パーソナルコンテキスト」機能を活用します。ホテルの部屋番号のような一時的な情報を記憶させたり、「お気に入りのバレエダンサーが出演する公演をカレンダーに登録して」といった曖昧な指示を理解し、実行することが可能です。パーソナライズが進むことで、より一層、気の利く秘書のような存在になります。

Pixel Watch 4とGeminiの組み合わせが示すのは、「スマートフォンからの解放」という新しいワークスタイルです。情報を得るため、あるいはタスクをこなすために、いちいちデバイスを手に取る必要がなくなるのです。ウェアラブルデバイスが真のパーソナルアシスタントとして機能する未来が、すぐそこまで来ていることを感じさせます。

マイクロソフト、「待てるAI」実現へ新技術を発表

既存AIエージェントの課題

長期間の監視タスクが苦手
待てずに失敗、またはリソース浪費
メール返信待ちなどの自動化困難

新技術SentinelStep

動的な間隔で状況を監視
コンテキスト管理で長期稼働を実現
指定条件を満たした際に自動実行

性能と将来性

長時間タスクの成功率が大幅向上
常時稼働アシスタント実現への布石

Microsoft Researchは2025年10月21日、長時間にわたる監視タスクを実行できるAIエージェント技術「SentinelStep」を発表しました。現在のAIエージェントは、メールの返信を待つといった単純な「待機」が苦手という課題がありました。新技術は、動的な監視間隔の調整とコンテキスト管理によりこの問題を解決し、常時稼働するアシスタントの実現に道を開くものです。

「メールの返信が来たら通知する」「株価が目標額に達したら知らせる」。こうしたタスクの自動化は多くの時間を節約しますが、現在のLLMエージェントは不得意です。頻繁に確認しすぎてリソースを浪費するか、数回で諦めてしまうためです。高度な分析やコーディングができる一方で、単純な「待機」ができないという意外な弱点がありました。

SentinelStepは、この課題を2つの工夫で解決します。1つ目は、タスクの性質に応じて確認頻度を賢く調整する「動的ポーリング」です。2つ目は、数日間にわたるタスクでも過去の文脈を失わない「コンテキスト管理」。これにより、エージェント効率的かつ粘り強くタスクを監視し続けられます。

ユーザーは「アクション(何を確認するか)」「条件(いつ完了か)」「ポーリング間隔(どのくらいの間隔で確認するか)」の3要素を設定するだけで、監視エージェントを構築できます。この仕組みは、同社が開発したプロトタイプ「Magentic-UI」に実装されており、Webブラウジングやコーディングなど、様々なタスクに応用可能です。

その効果は、専用の評価環境「SentinelBench」で実証済みです。SentinelStepを使用しない場合、2時間かかる監視タスクの成功率はわずか5.6%でした。しかし、新技術を適用すると成功率は38.9%へと大幅に向上。長時間になるほど、その信頼性の高さが際立つ結果となりました。

この技術は、単に待つだけでなく、適切なタイミングで行動を起こす、実用的でプロアクティブなAIエージェントへの重要な一歩です。SentinelStepはオープンソースとして公開されており、開発者はすぐにでもこの「忍耐強い」エージェントの構築を試せます。企業の生産性を高める「常時稼働アシスタント」の基盤となる可能性を秘めています。

DeepSeek、テキストを画像化し10倍圧縮する新AI

テキスト処理の常識を覆す

テキストを画像として表現
従来のトークンより最大10倍効率化
LLMの常識を覆すパラダイム転換

巨大コンテキストと高効率

1000万トークン級の文脈へ
単一GPU日産20万ページ処理
トークナイザー問題を根本的に解決

オープンソースで開発加速

モデルやコードを完全公開
圧縮データ上の推論能力が今後の課題

中国のAI研究企業DeepSeekは、テキスト情報を画像として処理することで最大10倍に圧縮する新しいオープンソースAIモデル「DeepSeek-OCR」を発表しました。この技術は、大規模言語モデル(LLM)が一度に扱える情報量(コンテキストウィンドウ)を劇的に拡大する可能性を秘めており、従来のテキスト処理の常識を覆す画期的なアプローチとして注目されています。

このモデルの核心は、テキストを文字の集まり(トークン)としてではなく、一枚の「絵」として捉え、視覚情報として圧縮する点にあります。従来、テキスト情報の方が視覚情報より効率的に扱えると考えられてきましたが、DeepSeek-OCRはこの常識を覆しました。OpenAIの共同創業者であるAndrej Karpathy氏も「LLMへの入力は全て画像であるべきかもしれない」と述べ、この発想の転換を高く評価しています。

その性能は驚異的です。実験では、700〜800のテキストトークンを含む文書をわずか100の視覚トークンで表現し、97%以上の精度で元のテキストを復元できました。これは7.5倍の圧縮率に相当します。実用面では、単一のNVIDIA A100 GPUで1日に20万ページ以上を処理できる計算となり、AIの学習データ構築などを大幅に加速させることが可能です。

この技術革新がもたらす最大のインパクトは、LLMのコンテキストウィンドウの飛躍的な拡大です。現在の最先端モデルが数十万トークンであるのに対し、このアプローチは1000万トークン級の超巨大な文脈の実現に道を開きます。企業の全社内文書を一度に読み込ませて対話するなど、これまで不可能だった応用が現実のものとなるかもしれません。

テキストの画像化は、長年AI開発者を悩ませてきた「トークナイザー」の問題を根本的に解決する可能性も秘めています。文字コードの複雑さや、見た目が同じでも内部的に異なる文字として扱われるといった問題を回避できます。さらに、太字や色、レイアウトといった書式情報も自然にモデルへ入力できるため、よりリッチな文脈理解が期待されます。

DeepSeekはモデルの重みやコードを全てオープンソースとして公開しており、世界中の研究者がこの新技術を検証・発展させることが可能です。一方で、圧縮された視覚情報の上で、LLMがどの程度高度な「推論」を行えるかは未知数であり、今後の重要な研究課題となります。この挑戦的なアプローチが、次世代AIの標準となるか、業界全体の注目が集まります。

Google AI Studio、統合UIと新機能で開発を加速

開発ワークフローを統合

複数AIモデルを単一画面で操作
コンテキスト切替が不要に
プロンプトから動画音声まで連続作成
一貫性のあるチャットUIデザイン

利便性を高める新機能

デザインのウェルカムページ
使用量・制限をリアルタイム可視化
Googleマップとの連携機能
実世界の地理データを活用可能

Googleは2025年10月18日、開発者向けプラットフォーム「Google AI Studio」のメジャーアップデートを発表しました。今回の更新は、開発者のフィードバックに基づき、AIモデルを利用した開発体験をよりシームレスかつ効率的にすることを目的としています。複数のAIモデルを統合した操作画面や、Googleマップとの連携機能などが追加されました。

アップデートの核となるのが、新しくなった「Playground」です。これまで別々のタブで操作する必要があった、対話AI「Gemini」や動画生成AI「GenMedia」などのモデルを、単一の統合された画面で利用可能になりました。これにより、開発者はタブを切り替える手間なく、アイデアから画像動画音声ナレーションまでを一つの流れで作成できます。

利便性を高める改善も加えられました。新しいウェルカムホームページは、プラットフォームの全機能へのアクセスを容易にし、最新情報や進行中のプロジェクトを一覧表示します。また、新たに追加されたレート制限ページでは、APIの使用状況と上限をリアルタイムで確認でき、予期せぬ利用中断を防ぎながらアプリケーションの規模を管理できます。

特に注目されるのが、Googleマップとの連携機能「マップグラウンディング」です。この機能により、開発者現実世界の地理データや文脈をAIモデルに直接組み込むことが可能になります。これにより、位置情報に基づいた、より正確で創造的なアプリケーション開発が期待できるでしょう。

Googleは今回のアップデートを「より良い基盤を築くためのもの」と位置付けています。開発ワークフローの摩擦をなくし、開発者が本来の創造的な作業に集中できる環境を整えました。同社は来週、この基盤の上に構築される新たなAI活用アプリ開発手法を発表する予定であり、さらなる進化が期待されます。

Anthropic、専門業務AI化へ 新機能『Skills』発表

新機能「Skills」とは

業務知識をフォルダでパッケージ化
タスクに応じAIが自動でスキル読込
ノーコードでもカスタムAI作成可能

導入企業のメリット

プロンプト手間を削減し作業効率化
属人化しがちな専門知識を共有
楽天は業務時間を8分の1に短縮

主な特徴と利点

複数スキルを自動で組合せ実行
APIなど全製品で一度作れば再利用OK

AI開発企業Anthropicは10月16日、同社のAIモデル「Claude」向けに新機能「Skills」を発表しました。これは、企業の特定業務に関する指示書やデータをパッケージ化し、Claudeに専門的なタスクを実行させるAIエージェント構築機能です。複雑なプロンプトを都度作成する必要なく、誰でも一貫した高品質のアウトプットを得られるようになり、企業の生産性向上を支援します。

「Skills」の核心は、業務知識の再利用可能なパッケージ化にあります。ユーザーは、指示書やコード、参考資料などを一つのフォルダにまとめることで独自の「スキル」を作成。Claudeは対話の文脈を理解し、数あるスキルの中から最適なものを自動で読み込んでタスクを実行します。これにより、AIの利用が特定の個人のノウハウに依存する問題を解決します。

導入効果は劇的です。先行導入した楽天グループでは、これまで複数部署間の調整が必要で丸一日かかっていた管理会計業務を、わずか1時間で完了できるようになったと報告しています。これは生産性8倍に相当します。他にもBox社やCanva社が導入し、コンテンツ作成や資料変換といった業務で大幅な時間短縮を実現しています。

技術的には「段階的開示」と呼ばれるアーキテクチャが特徴です。AIはまずスキルの名称と要約だけを認識し、タスクに必要と判断した場合にのみ詳細情報を読み込みます。これにより、モデルのコンテキストウィンドウの制限を受けずに膨大な専門知識を扱える上、処理速度とコスト効率を維持できるのが、競合の類似機能に対する優位点です。

本機能は、Claudeの有料プラン(Pro、Max、Team、Enterprise)のユーザーであれば追加費用なしで利用できます。GUI上で対話形式でスキルを作成できるため、エンジニアでなくとも利用可能です。もちろん、開発者向けにはAPIやSDKも提供され、より高度なカスタムAIエージェントを自社システムに組み込めます。

一方で、SkillsはAIにコードの実行を許可するため、セキュリティには注意が必要です。Anthropicは、企業管理者が組織全体で機能の有効・無効を制御できる管理機能を提供。ユーザーが信頼できるソースから提供されたスキルのみを利用するよう推奨しており、企業ガバナンスの観点からも対策が講じられています。

AIエージェント開発競争が激化する中、Anthropicは企業の実用的なニーズに応える形で市場での存在感を高めています。専門知識を形式知化し、組織全体の生産性を高める「Skills」は、AI活用の次の一手となる可能性を秘めているのではないでしょうか。

不在同僚のAI分身を生成、Vivenが53億円調達

「不在」が招く業務停滞を解消

同僚の不在による情報共有の遅延
AIで従業員のデジタルツインを生成
メールやSlackから知識を学習
いつでも必要な情報に即時アクセス

プライバシー保護が成功の鍵

機密情報へのアクセス制御技術
個人情報は自動で非公開
質問履歴の可視化で不正利用を防止
著名VC革新性を評価し出資

AI人材管理で知られるEightfoldの共同創業者が、新会社Vivenを立ち上げ、シードラウンドで3500万ドル(約53億円)を調達しました。Vivenは、従業員一人ひとりの「デジタルツイン」をAIで生成するサービスです。休暇や時差で不在の同僚が持つ情報にいつでもアクセスできるようにし、組織全体の生産性向上を目指します。著名投資家もその革新的なアイデアに注目しています。

Vivenの核心は、各従業員専用に開発される大規模言語モデル(LLM)です。このLLMが本人のメールやSlack、社内文書を学習し、知識や経験を内包したAIの「分身」を創り出します。他の従業員は、このデジタルツインに話しかけるように質問するだけで、プロジェクトに関する情報や知見を即座に引き出すことが可能になります。

このような仕組みで最大の障壁となるのが、プライバシーセキュリティです。Vivenは「ペアワイズコンテキスト」と呼ばれる独自技術でこの課題を解決します。この技術により、LLMは誰がどの情報にアクセスできるかを正確に判断し、機密情報や個人的な内容が意図せず共有されるのを防ぎます。

さらに、Vivenは従業員が自身のデジタルツインへの質問履歴をすべて閲覧できるようにしています。これにより、不適切な質問への強力な抑止力が働きます。この複雑な情報共有とプライバシー保護の両立は、最近のAI技術の進歩によってようやく実現可能になった、非常に難易度の高い問題だとされています。

創業者によれば、現在エンタープライズ向けデジタルツイン市場に直接の競合は存在しないとのことです。しかし、将来的に大手AI企業が参入する可能性は否定できません。その際、Vivenが先行して築いた「ペアワイズ」コンテキスト技術が、他社に対する強力な参入障壁になると期待されています。

Vivenは既に、コンサルティング大手のGenpactや、創業者らが率いるEightfold自身も顧客として導入を進めています。伝説的な投資家ヴィノド・コースラ氏も「誰もやっていない」とその独自性を認め出資を決めるなど、市場からの期待は非常に大きいと言えるでしょう。

統合AIプラットフォーム競争激化、GoogleとAWSが新サービス

Googleの新統合AI基盤

Google AIを単一プラットフォームに集約
ノーコードエージェントを構築・管理
Microsoft 365など外部データと連携
月額30ドル/人から利用可能

AWSのブラウザ拡張AI

ブラウザ拡張機能で提供
OutlookやSlack上で直接利用
多様な企業データソースに接続
既存のBedrockエージェントを活用

GoogleAmazon Web Services (AWS)が、企業向けに新たな統合AIプラットフォームを相次いで発表しました。Googleは「Gemini Enterprise」を、AWSは「Quick Suite」を投入し、従業員が業務で使うアプリケーションから離れることなく、シームレスにAI機能を呼び出せる環境を目指します。この動きは、作業の文脈(コンテキスト)を維持し、生産性を劇的に向上させることを狙ったものです。

これまでAIチャットボットを利用するには、作業中のアプリとは別に専用画面を開く必要があり、手間や思考の中断が課題でした。この「摩擦」を解消し、作業の文脈を失うことなくAIを活用できるフルスタックな環境が求められています。従業員のワークフローにAIを自然に組み込むことが、生産性向上の鍵となるのです。

Googleの「Gemini Enterprise」は、同社のAIサービスを一つのプラットフォームに統合します。Google Workspaceに加え、Microsoft 365やSalesforceといった外部データソースにも接続可能です。専門知識がなくても、ノーコードで情報検索や業務自動化のためのエージェントを構築・管理できる点が大きな特徴と言えるでしょう。

一方のAWSが発表した「Quick Suite」は、ブラウザ拡張機能として提供されます。これにより、ChromeやOutlook、Slackといった日常的に使うツール上で直接AIエージェントを呼び出せます。バックエンドではAWSのAI基盤「Bedrock」で構築したエージェントを活用でき、企業ごとの独自データに基づいた応答が可能です。

両社の新サービスが目指すのは、従業員を一つのエコシステム内に留め、作業を中断させないシームレスなAI体験の提供です。企業向けAI市場の覇権を巡る戦いは、いかに既存の業務フローに溶け込めるかという「利便性」の競争へと移行し始めています。今後、各社はさらなる差別化を迫られることになるでしょう。

Google、対話型AI検索「Search Live」をインド展開

インド市場での拡大

AI検索機能「Search Live」をインドで提供開始米国に次ぐ2例目)
英語とヒンディー語に対応し展開
AI Modeが7つのインド現地語を追加サポート
対象言語はベンガル語、タミル語など計7言語

機能と戦略的狙い

リアルタイム支援の会話型検索を実現
カメラで写した視覚情報を用いたマルチモーダル検索
インド早期AI採用をトレーニングに活用
Search Liveの基盤技術はカスタム版Gemini

Googleは、AIを搭載した会話型検索機能「Search Live」をインドで提供開始しました。これは、米国に次いで2番目の市場展開となります。同時に、AI Modeもインドの現地語7言語に拡大対応。同国はGoogleにとって最速で成長する市場の一つであり、AI機能を強化することで、巨大なユーザー層の獲得を目指します。

Search Liveは、Geminiをカスタム化したAIモデルとProject Astra技術に基づいています。ユーザーはスマートフォンのカメラを向けた物体に対し、リアルタイムで質問し、双方向の会話を通じて支援を得られます。視覚的なコンテキストを利用するマルチモーダル検索であり、ユーザー体験を大きく変えるものです。

Googleのプロダクト担当副社長は、インドの人々を「マルチモーダル検索のパワーユーザー」と表現し、音声および視覚検索において世界最大のユーザー基盤だと強調しています。この高いAI採用意欲が、インド米国に次ぐ Search Live の導入市場となった論理的な理由です。

今回のインド展開には、同国の早期AI採用層を活かし、広範な視覚的コンテキストでシステムを訓練するという戦略的狙いがあります。多様な環境や言語から得られるデータは、Search Liveの能力を時間とともに向上させ、グローバル展開の精度を高める基盤となります。

また、AI Modeはベンガル語、タミル語、ウルドゥー語など新たに7つのインド現地語に対応しました。これは、世界200以上の国と地域、35以上の新言語へのグローバル拡大の一環です。カスタムGeminiモデルが現地言語の微妙なニュアンスを正確に把握できるとしています。

Gemini CLIが外部連携を全面開放、オープンな拡張機能で開発生産性を劇的に向上

オープンな連携基盤を確立

Gemini CLIを拡張プラットフォームへ進化
外部ツールとの連携をコマンドラインで実現
開発者100万人が利用するAIエージェント
FigmaやStripeなど大手と連携開始

開発者主導の拡張性

Google非承認で公開できるオープン性
GitHubリポジトリでの手動インストールを推奨
Playbook機能でAIが使い方を即座学習
複雑な設定不要で意味のある結果を即時提供

Googleは、開発者向けAIシステム「Gemini CLI」に、外部ツールと連携するための拡張機能システムを正式に導入しました。これにより、100万人以上の開発者は、コマンドライン上で直接、FigmaやStripe、Dynatraceといった業界リーダーのサービスを利用可能になります。AIの力を借りて、開発者がターミナルと外部ツール間でのコンテキストスイッチングを排除し、生産性を劇的に高めることが目的です。

この拡張機能システムは、Gemini CLIを単なるコーディング補助ツールから「拡張性プラットフォーム」へと進化させます。拡張機能は外部ツールへの接続を可能にするだけでなく、AIエージェントがそのツールを効果的に使用するための「プレイブック」(組み込みの説明書)を含んでいます。これにより、開発者は複雑な設定なしに、最初のコマンドから意味のある結果を得ることができます。

特に注目すべきは、そのオープンなエコシステム戦略です。OpenAIChatGPTのアプリが厳しくキュレーションされているのに対し、Gemini CLIの拡張機能は、Googleの承認や関与なしに、誰でもGitHub上で開発・公開できます。これは「誰もが参加できる公正なエコシステム」を確立したいというGoogleの強い意志を反映しています。

ローンチ時点で、Figma(デザインコード生成)、Stripe(支払いサービスAPI連携)、Postman(API評価)、Shopify(開発者エコシステム連携)など、多数の主要パートナーが参画しています。これらの拡張機能をインストールするだけで、ターミナルが開発者統合されたツールチェーンの中心となり、デバッグCI/CDセキュリティチェックといった作業が効率化されます。

拡張機能は、Model Context Protocol (MCP) と呼ばれるツール連携の基盤上に構築されています。これにより、拡張機能は、ローカルファイルやGitステータスなどの環境コンテキストも利用し、開発者の意図通りに適切なツールと指示を実行します。この統合されたインテリジェンスが、開発現場におけるAIの利用価値を飛躍的に高めるでしょう。

AI21が25万トークン対応の小型LLMを発表、エッジAIの経済性を一変

小型モデルの定義変更

30億パラメータのオープンソースLLM
エッジデバイスで25万トークン超を処理
推論速度は従来比2〜4倍高速化

分散型AIの経済性

MambaとTransformerハイブリッド構造採用
データセンター負荷を減らしコスト構造を改善
高度な推論タスクをデバイスで実行

企業利用の具体例

関数呼び出しやツールルーティングに最適
ローカル処理による高いプライバシー確保

イスラエルのAIスタートアップAI21 Labsは、30億パラメータの小型オープンソースLLM「Jamba Reasoning 3B」を発表しました。このモデルは、ノートPCやスマートフォンなどのエッジデバイス上で、25万トークン以上という異例の長大なコンテキストウィンドウを処理可能であり、AIインフラストラクチャのコスト構造を根本的に変える可能性を秘めています。

Jamba Reasoning 3Bは、従来のTransformerに加え、メモリ効率に優れたMambaアーキテクチャを組み合わせたハイブリッド構造を採用しています。これにより、小型モデルながら高度な推論能力と長文処理を両立。推論速度は従来のモデルに比べて2〜4倍高速であり、MacBook Pro上でのテストでは毎秒35トークンを処理できることが確認されています。

AI21の共同CEOであるオリ・ゴーシェン氏は、データセンターへの過度な依存が経済的な課題となっていると指摘します。Jamba Reasoning 3Bのような小型モデルをデバイス上で動作させることで、高価なGPUクラスターへの負荷を大幅に軽減し、AIインフラストラクチャのコスト削減に貢献し、分散型AIの未来を推進します。

このモデルは、特に企業が関心を持つユースケースに最適化されています。具体的には、関数呼び出し、ポリシーに基づいた生成、そしてツールルーティングなどのタスクで真価を発揮します。シンプルな業務指示や議事録作成などはデバイス上で完結し、プライバシーの確保にも役立ちます。

Jamba Reasoning 3Bは、同規模の他の小型モデルと比較したベンチマークテストでも優位性を示しました。特に長文理解を伴うIFBenchやHumanity’s Last Examといったテストで最高スコアを獲得。これは、同モデルがサイズを犠牲にすることなく、高度な推論能力を維持していることを示しています。

企業は今後、複雑で重い処理はクラウド上のGPUクラスターに任せ、日常的かつシンプルな処理はエッジデバイスでローカルに実行する「ハイブリッド運用」に移行すると見られています。Jamba Reasoning 3Bは、このハイブリッド戦略の中核となる効率的なローカル処理能力を提供します。

PowerSchool、SageMakerで実現した教育AI向けコンテンツフィルタリング

K-12教育特化AIの安全確保

K-12教育向けAIアシスタント「PowerBuddy」
歴史教育などでの誤検出(False Positive)を回避
いじめ・自傷行為の即時検知を両立させる必要性

SageMaker活用によるモデル育成

Llama 3.1 8BをLoRA技術で教育特化ファインチューニング
高い可用性とオートスケーリングを要件にSageMakerを採用
有害コンテンツ識別精度約93%、誤検出率3.75%未満

事業へのインパクトと将来性

学校現場での教師の負担を大幅に軽減
将来的にマルチアダプター推論で運用コストを最適化

教育分野向けのクラウドソフトウェア大手PowerSchoolは、AIアシスタント「PowerBuddy」の生徒安全を確保するため、AWSAmazon SageMaker AIを活用し、コンテンツフィルタリングシステムを構築しました。オープンな基盤モデルであるLlama 3.1を教育ドメインに特化してファインチューニングし、高い精度と極めて低い誤検出率を両立させ、安全な学習環境の提供を実現しています。

このソリューションが目指したのは「責任あるAI(Responsible AI)」の実現です。ジェネリックなAIフィルタリングでは、生徒が歴史的な戦争やホロコーストのような機微な学術的話題を議論する際に、誤って暴力的コンテンツとして遮断されるリスクがありました。同時に、いじめや自傷行為を示唆する真に有害な内容は瞬時に検知する必要があり、ドメイン特化の調整が不可欠でした。

PowerSchoolは、このカスタムモデルの開発・運用基盤としてAmazon SageMaker AIを選定しました。学生の利用パターンは学校時間帯に集中するため、急激なトラフィック変動に対応できるオートスケーリング機能と、ミッションクリティカルなサービスに求められる高い信頼性が決め手となりました。また、モデルの重みを完全に制御できる点も重要でした。

同社はLlama 3.1 8Bモデルに対し、LoRA(Low Rank Adaptation)技術を用いたファインチューニングをSageMaker上で行いました。その結果、教育コンテキストに特化した有害コンテンツ識別精度は約93%を達成。さらに、学術的な内容を誤って遮断する誤検出率(False Positive)を3.75%未満に抑えることに成功しました。

この特化型コンテンツフィルタリングの導入は、学生の安全を確保するだけでなく、教育現場に大きなメリットをもたらしています。教師はAIによる学習サポートにおいて生徒を常時監視する負担が減り、より個別指導に集中できるようになりました。現在、PowerBuddyの利用者は420万人以上の学生に拡大しています。

PowerSchoolは今後、SageMaker AIのマルチアダプター推論機能を活用し、コンテンツフィルターモデルの隣で、教育ドメインに特化した意思決定エージェントなど複数の小型言語モデル(SLM)を展開する計画です。これにより、個別のモデルデプロイが不要となり、専門性能を維持しつつ大幅なコスト最適化を目指します。

AI生成コード急増が招くセキュリティ危機:透明性と責任追跡が困難に

新たなリスク源

AIは脆弱なコードを学習データとして取り込む
過去の脆弱性再発・混入する可能性
特定コンテキストを考慮しない「ラフドラフト」の生成

開発ライフサイクルの複雑化

LLM出力が不安定で毎回異なるコードを生成
人間によるレビューへの過度な依存が発生
コードの所有権や監査履歴の追跡が困難

影響と対策の遅れ

企業のコードの6割以上がAI生成(2024年調査)
承認ツールリストを持つ組織は2割未満
リソースの少ない組織がセキュリティ被害を受けやすい

AIによるコード生成、通称「Vibe Coding」の急速な普及が、ソフトウェアサプライチェーンに新たな、かつ深刻なセキュリティリスクをもたらしています。セキュリティ専門家は、生産性向上と引き換えに、コードの透明性や責任追跡性が失われ、従来のオープンソースが抱えていた問題を上回る危険性を指摘しています。

その最大のリスクは、AIモデルが学習データとして、公開されている古い、脆弱な、または低品質なコードを取り込んでしまう点にあります。この結果、過去に存在した脆弱性がAIによって自動生成されたコード内に再発・混入する可能性が高まっています。

多くの開発者がゼロからコードを書く手間を省くため、AI生成コードを流用しています。しかし、AIは特定の製品やサービスの詳細なコンテキストを完全に把握せず「ラフドラフト」を生成するため、開発者人間のレビュー能力に過度に依存せざるを得ません。

従来のオープンソースには、プルリクエストやコミットメッセージなど、誰がコードを修正・貢献したかを追跡するメカニズムが存在しました。しかし、AIコードにはそうしたアカウンタビリティ(責任追跡)の仕組みがなく、コードの所有権や人間の監査履歴が不明瞭になりがちです。

大規模言語モデル(LLM)は同じ指示を与えても毎回わずかに異なるコードを出力します。この特性は、チーム内での一貫性の確保やバージョン管理を極めて複雑にします。従来の開発プロセスに、AI由来の新たな複雑性が加わった形です。

調査によると、2024年には組織のコードの60%以上がAIによって生成されていると回答した幹部が3分の1に上りました。にもかかわらず、AIコード生成ツールの承認リストを持つ組織は2割未満にとどまり、セキュリティ対策の遅れが深刻化しています。

特に、低コストで迅速なアプリケーション開発を望む中小企業やリソースの少ない組織は、AIコードに依存することで、皮肉にもセキュリティ被害を被るリスクが不釣り合いに増大すると警告されています。企業は技術導入の際に、潜在的な影響を慎重に評価すべきです。

19歳CEOのAI記憶SaaS、Google幹部らから260万ドル調達

AIの長期記憶を実現

LLMのコンテキスト窓の限界を克服
セッションを超えた長期記憶機能をアプリに提供
非構造化データから知識グラフを自動構築
競合と比較し低レイテンシでの提供が強み

創業と調達のインパクト

19歳の創業者Shah氏が全米で事業開始
シードラウンドで260万ドルを調達
Google AI責任者Jeff Dean氏らが出資
既存顧客にはa16z出資のデスクトップAIも

AIアプリケーションの長期記憶機能を専門とするスタートアップ、Supermemoryは、シードラウンドで260万ドルを調達しました。創業者である19歳のドラヴヤ・シャー氏の迅速な開発力が評価され、このラウンドにはGoogle AIのトップであるジェフ・ディーン氏CloudflareのCTOなど、著名なテック業界幹部が個人投資家として参画しています。

現在のLLMはコンテキストウィンドウ(文脈記憶の範囲)に限界があり、セッションを跨いだ長期的な記憶保持が困難です。Supermemoryは、この課題を解決するため、非構造化データから「記憶」やインサイトを抽出し、知識グラフとして永続化するユニバーサルメモリーAPIを提供します。

同社のAPIは、ドキュメント、メール、チャット、PDFなど、あらゆる種類のデータを取り込むことができます。これにより、AIアプリは過去の膨大なデータからユーザーにパーソナライズされたコンテキストを迅速に引き出せます。動画エディタが関連アセットを検索するなど、マルチモーダルなユースケースにも対応します。

今回の資金調達は、Susa VenturesやBrowder Capitalが主導しました。投資家たちは、シャー氏がわずか19歳でありながら、アイデアを驚異的なスピードでプロダクト化する実行力に強く惹かれたといいます。この強力なバックアップ体制は、今後の成長を大きく後押しするでしょう。

AIのメモリーレイヤーを構築する競合他社は存在しますが、Supermemoryは特に低レイテンシ(低遅延)でのデータ提供能力を強みとしています。既にa16z出資のデスクトップアシスタントCluelyやAI動画エディタMontraなど、複数の既存顧客を獲得しており、市場での高い需要を示しています。

GoogleのAIコーディング支援、APIとCLIで開発を加速

開発ワークフローに直接統合

ターミナルで直接操作するCLI提供
API公開でシステム連携が可能に
SlackCI/CDパイプラインへ統合
作業環境の切替コストを大幅削減

Julesの進化と今後の展望

対話履歴を記憶するメモリ機能を搭載
Gemini 2.5 Proを基盤に動作
GitHub以外のバージョン管理も検討
プロ向け有料プランで利用上限拡大

Googleは10月2日、AIコーディングエージェント「Jules」を開発者ワークフローに深く統合するための新機能を発表しました。新たに提供されるコマンドラインインターフェース(CLI)とパブリックAPIにより、開発者はターミナルや既存ツールからJulesを直接利用できます。これは、開発環境の切り替え(コンテキストスイッチ)を減らし、生産性を向上させることが目的です。

今回のアップデートの核心は、開発者が日常的に使用するツールへの統合です。新CLI「Jules Tools」を使えば、WebサイトやGitHubを開くことなく、使い慣れたターミナル上でJulesにコーディングタスクを指示できます。また、公開されたAPIは、SlackCI/CDパイプラインといった既存システムとの連携を可能にし、開発ワークフローの自動化を促進します。

Julesは、同じくGoogleが提供する「Gemini CLI」とは異なる役割を担います。Julesは、ユーザーが計画を承認すると自律的にタスクを遂行する非同期型のエージェントとして設計されています。一方、Gemini CLIは、ユーザーと対話を重ねながら作業を進める、より反復的な共同作業を想定しており、用途に応じた使い分けが求められます。

GoogleはJulesの機能強化を継続的に進めています。最近では、過去の対話やユーザーの好みを記憶する「メモリ機能」を導入しました。これにより、タスクを依頼するたびに同じ指示を繰り返す必要がなくなり、よりパーソナライズされたアシスタントとして進化しています。ファイルシステムの改善なども行われ、信頼性と品質が向上しています。

今後の展望として、Julesの利用環境の拡大が挙げられます。現在はGitHubリポジトリ内での利用が前提ですが、今後は他のバージョン管理システムへの対応も検討されています。これが実現すれば、より多様な開発環境でJulesの能力を活用できるようになり、開発者コミュニティにとって大きなメリットとなるでしょう。

AIエージェントの自律性が高まる一方、人間の監督も重要です。Julesは、タスクの実行中に行き詰まった場合、自ら処理を中断し、ユーザーに質問するように設計されています。これにより、AIが意図しない動作をするリスクを低減し、開発者が安心してタスクを委任できる信頼関係の構築を目指しています。

SlackでClaudeが利用可能に、生産性向上を加速

Slackで完結するAI活用

Slack内で直接Claudeを起動
DMやスレッドでAIが応答支援
Web検索や接続済み文書も参照
AIの応答は下書き確認後にチーム共有

過去の情報をAIが瞬時に探索

Slack内の会話やファイルを横断検索
会議準備やプロジェクト進捗を要約
新規メンバーの情報把握を支援
チームの議論を公式文書化

AI開発企業Anthropicは、同社のAIアシスタントClaude」をビジネスコミュニケーションツール「Slack」と統合したと発表しました。この連携により、ユーザーはSlack内で直接Claudeの支援を受けたり、ClaudeからSlackの過去の情報を検索したりすることが可能になり、チームの生産性を飛躍的に向上させることを目指します。

SlackClaudeアプリを追加すると、使い慣れた画面でAIの能力を最大限に活用できます。ダイレクトメッセージや特定のスレッド内で「@Claude」とメンションするだけで、会話の文脈を踏まえた応答案の作成や、Web検索、接続済みのドキュメント分析などを依頼できます。これにより、作業を中断することなく、必要なサポートを即座に得られます。

特筆すべきは、ユーザーが常に主導権を握れる設計です。Claudeがスレッド内で生成した応答は、まずユーザーにのみ非公開で提示されます。ユーザーは内容を確認、編集した上でチームに共有するかを決定できるため、意図しない情報共有のリスクを避け、AIとの協業を円滑に進めることが可能です。

もう一つの強力な機能が、SlackClaudeに接続する連携です。これにより、Claudeはユーザーがアクセス権を持つチャンネル、ダイレクトメッセージ、共有ファイルを横断的に検索し、コンテキストとして参照できます。社内に蓄積された膨大な知識の中から、必要な情報を瞬時に探し出すことが可能になります。

この検索機能は、多様なビジネスシーンで効果を発揮します。例えば、会議前に複数のチャンネルに散らばった関連議論を要約させたり、新規プロジェクトに参加したメンバーが過去の経緯を素早く把握したりする際に役立ちます。埋もれがちな「暗黙知」を形式知に変え、チーム全体の意思決定を加速させるでしょう。

Slackの親会社であるSalesforceの最高製品責任者、ロブ・シーマン氏は、「AIエージェントと人間が協働する『エージェント型企業』への移行を加速させるものだ」とコメント。この統合が、より生産的でインテリジェントな働き方を実現することへの強い期待を表明しました。

本機能はSlackの有料プランを利用しているチームが対象で、Slack Marketplaceから導入できます。セキュリティ面では、Claudeはユーザーが持つ既存のSlack権限を尊重するため、アクセスできない情報には触れません。企業のセキュリティポリシーを遵守しつつ、安全にAIの利便性を享受できる仕組みです。

AIで直感開発、新エンジンVibeGame登場

「Vibe Coding」の課題

AIに頼る直感的なゲーム開発
プロジェクト肥大化で性能が低下
既存エンジンはAIとの相性難

VibeGameの設計思想

Web技術の高いAI親和性を基盤に
Robloxのような高い抽象度を実現
AIが理解しやすい宣言的な構文を採用
柔軟なECSアーキテクチャ

現状と今後の可能性

基本機能で良好な結果を確認
複雑な機能は今後実装予定

AIプラットフォームのHugging Faceが、AI支援によるゲーム開発に特化した新オープンソースエンジン「VibeGame」を発表しました。これは、AIとの対話で直感的に開発を進める「Vibe Coding」の課題を解決するものです。Web技術のAI親和性と、高レベルな抽象化を両立させることで、開発者コーディングの詳細から解放され、創造的な作業に集中できる環境を目指します。

Vibe Coding」とは、AIを高レベルなプログラミング言語のように扱い、細かな実装をAIに任せる開発スタイルを指します。この手法は初期段階では有効ですが、プロジェクトが大規模化するとAIが文脈を把握しきれなくなり、性能が著しく低下するという課題がありました。特にゲーム開発では、このコンテキスト管理が成功の鍵を握ります。

開発チームは既存プラットフォームの比較検討から始めました。Robloxは抽象度が高いものの閉鎖的で、Unityは複雑すぎてAIが混乱しがちでした。一方、Web技術はAIの習熟度が高い反面、ライブラリが低レベルで、ゲームエンジン自体の構築から始める必要がありました。それぞれに一長一短があったのです。

そこでVibeGameは、両者の「良いとこ取り」を目指しました。AIが最も得意とするWeb技術(three.jsなど)を基盤としながら、Robloxのような高レベルな抽象化を提供します。これにより、開発者は「地面とボールを配置して」と指示するだけで、物理演算を含むシーンを簡単に生成できます。

VibeGameの核心は3つの設計思想にあります。第一に、物理演算などを内蔵した高い抽象度。第二に、AIが容易に理解・生成できるHTML風の宣言的構文。そして第三に、拡張性に優れたECSアーキテクチャです。これらが組み合わさることで、AIとの円滑な共同作業が初めて可能になります。

VibeGameはまだ初期段階にあり、対応するのは基本的な物理演算やレンダリングに留まります。しかし、簡単なゲーム開発のテストでは非常に良好な結果を示しました。今後は、インベントリ管理やマルチプレイヤー機能など、より複雑なメカニクスの実装を進め、本格的なゲーム開発への対応を目指していく計画です。

この新しいエンジンは、AIを単なるツールではなく「共同開発者」として扱う未来を示唆しています。経営者エンジニアにとって、VibeGameのような技術が開発プロセスをいかに変革し、生産性を劇的に向上させる可能性があるか、注目に値するでしょう。

MIT、対話型AI「MultiverSeg」開発 医療研究を加速

マサチューセッツ工科大学(MIT)の研究者が、医療画像のセグメンテーション(領域分割)作業を劇的に効率化する新しい対話型AIシステム「MultiverSeg」を開発しました。このシステムは、ユーザーが画像上で行うクリックや走り書きなどの簡単な操作から学習します。作業を繰り返すほどAIの精度が向上し、最終的にはユーザーの操作なしで高精度なセグメンテーションが可能になり、臨床研究の加速やコスト削減が期待されます。 MultiverSegの最大の特徴は、ユーザーの操作を学習し続ける点にあります。従来の対話型ツールでは画像ごとに同じ操作を繰り返す必要がありましたが、本システムは過去の作業結果を「コンテキストセット」として記憶・参照します。これにより、新しい画像を処理する際のユーザーの負担が徐々に軽減され、作業効率が飛躍的に向上します。この仕組みは、これまでのアプローチの長所を組み合わせたものです。 性能比較実験では、他の最先端ツールを上回る結果を示しました。例えば、9枚目の画像を処理する頃には、わずか2回のクリックでタスク特化型モデルより高い精度を達成しました。X線画像のような特定のケースでは、1〜2枚の画像を手動で処理するだけで、AIが自律的に高精度な予測を行えるようになります。これは、手作業に比べ圧倒的な時間短縮です。 このツールのもう一つの利点は、機械学習の専門知識や事前のデータセット準備が不要なことです。研究者や医師は、セグメンテーションしたい新しい画像をアップロードし、直感的に操作を始めるだけですぐに利用できます。AIモデルの再トレーニングも不要なため、導入のハードルが低く、幅広い臨床現場や研究での活用が見込まれます。 研究チームは今後、臨床現場での実証実験を通じてフィードバックを収集し、システムの改善を進める計画です。また、現在は2D画像のみに対応していますが、将来的には3D医用画像への応用も目指しています。この技術が普及すれば、新しい治療法の研究が加速し、臨床試験や医療研究全体のコスト削減に大きく貢献する可能性があります。

Amazon Qがブラウザ拡張を投入。既存ワークフローで<span class='highlight'>生産性を向上

新機能の概要

Amazon Q Businessのブラウザ拡張機能
コンテキスト認識型AIを導入
ワークフロー中断の課題解消

主な利用効果

ウェブコンテンツの高速分析
外部情報連携による洞察獲得
複数の情報源を用いたコンテンツ検証

導入のメリット

意思決定プロセスの加速
企業データのシームレスな接続
Chrome/Edge/Firefoxに対応

AWSは先日、企業向け生成AIアシスタントAmazon Q Business」にブラウザ拡張機能を追加しました。これは、従業員が日常業務で利用するブラウザ内で、コンテキストを認識したAIアシスタンスを直接提供するものです。これにより、慣れたワークフローを中断することなく、企業データや外部情報に基づいた迅速な洞察抽出や意思決定が可能となり、組織全体の生産性の大幅な向上を目指します。

従来の生成AI導入における課題は、ユーザーがAI分析のために手動でデータを転送したり、慣れた環境を離れたりする必要がある点でした。本拡張機能は、こうした「摩擦」を解消します。ブラウザにAI機能を直接組み込むことで、業務中にAIを活用する機会を見逃すことなく、シームレスなサポートを受けられるのが最大の特長です。

具体的な活用事例として、ウェブコンテンツの分析が挙げられます。戦略部門や技術チームは、外部のレポートや競合分析、業界文書など、社外の断片的な情報から戦略的な洞察を導き出す必要があります。拡張機能を使えば、信頼できる内部・外部データを瞬時に統合し、トレンドの特定やインサイト生成を数秒で完了できます。

また、コンテンツ品質の改善にも大きく寄与します。通常、生成AIアシスタントがアクセスできない複数の外部データソースや、ウェブベースのスタイルガイドを含めたクエリが可能です。これにより、コンテンツのリアルタイムな検証が可能となり、多様な情報源に基づいた高品質なコンテンツ作成プロセスを加速させることができます。

導入には、Amazon Q BusinessのアプリケーションとWeb Experienceの設定が必要です。管理者は、Chromium(Chrome、Edge)やFirefoxに対応した拡張機能を一括で展開でき、さらに企業のブランドに合わせてアイコンや名称をカスタマイズすることも可能です。これにより、組織への浸透と迅速な導入をサポートします。

セキュリティ面では、Amazon Q Businessはユーザーの会話データをLLMのトレーニングには使用しません。会話はアプリケーション内に30日間のみ保存され、ユーザーはこれを削除することも可能です。このデータ管理方針は、機密情報を扱う企業ユーザーにとって重要な安心材料となります。

Nothing社、AI特化OSで市場刷新へ 2億ドル調達し来年デバイス投入

事業拡大と資金調達

2億ドルの資金調達を完了
企業評価額13億ドルに到達
流通網拡大とイノベーション加速
初の「AIネイティブデバイス」を来年投入

AI特化OSの戦略

従来と異なるAI特化のOSを開発
スマートフォンからEV、人型ロボットに対応
ユーザーに合わせた超パーソナライズ体験を実現
コンテキストとユーザー知識の活用を重視

ロンドン発の消費者テック企業Nothing社は、2億ドル(約310億円)の資金調達を発表し、評価額を13億ドルに引き上げました。同社は来年、既存の概念を覆す「AIネイティブデバイス」を市場に投入します。これは、従来のOSとは大きく異なる、AIに特化した新しいオペレーティングシステム(AI OS)を基盤とする戦略です。

このAI OSは、スマートフォンやヘッドホンといった既存の製品群に加え、スマートグラス、電気自動車(EV)、さらには人型ロボットまで、将来登場するあらゆるデバイスの頭脳となることを目指しています。ペイCEOは、この特化型OSを通じて、ユーザー一人ひとりに合わせた「超パーソナライズされた体験」を提供できると強調しています。

ペイCEOは、OS開発における独自の強みとして、コンテキストやユーザー知識を持つ「最後の流通接点(ラストマイル)」を握っている点を挙げます。これにより、単なるツールではない、ユーザーの日常生活に深く入り込み、真に役立つAI体験をハードウェアに統合できると説明しています。

Nothing社の挑戦は、過去に大衆市場の支持を得られなかったAIネイティブデバイスという未開拓の領域です。Appleのような大手企業でさえ成功を収めていない上、OpenAIと元Appleデザイナーのジョニー・アイヴ氏が共同開発する競合製品も存在します。Nothing社にとって、需要を創出し、この新たなカテゴリーを確立できるかが最大の試練となります。

GPT-5-Codexが開発生産性を劇的に向上させる理由

エージェント能力の進化

複雑なタスクで最長7時間以上の独立稼働
タスクに応じた思考時間の動的な調整
迅速な対話と長期的な独立実行の両立
実世界のコーディング作業に特化しRL学習を適用

ワークフローへの密着

CLI、IDE拡張機能、GitHubへシームレスに連携
ローカル環境とクラウド間のコンテキスト維持
画像やスクリーンショットを入力可能

品質と安全性の向上

コードレビューの精度が大幅に向上
重大なバグを早期に発見しレビュー負荷を軽減
サンドボックス環境による強固なセキュリティ

OpenAIは、エージェントコーディングに特化した新モデル「GPT-5-Codex」を発表し、開発環境Codexを大幅にアップグレードしました。これはGPT-5を実世界のソフトウェアエンジニアリング作業に最適化させたバージョンです。開発者はCLI、IDE、GitHubChatGPTアプリを通じて、より速く、信頼性の高いAIアシスタントを活用できるようになります。

最大の進化は、タスクの複雑性に応じて思考時間を動的に調整する能力です。GPT-5-Codexは、大規模なリファクタリングデバッグなどの複雑なタスクにおいて、最長7時間以上にわたり独立して作業を継続できることが確認されています。これにより、長期的なプロジェクトの構築と迅速なインタラクティブセッションの両方に対応します。

モデルは、既存のコードベース全体を理解し、依存関係を考慮しながら動作検証やテスト実行が可能です。特にコードレビュー機能が強化されており、コミットに対するレビューコメントの正確性と重要性が向上。重大な欠陥を早期に特定し、人間のレビュー工数を大幅に削減します。

開発ワークフローへの統合も一層強化されました。刷新されたCodex CLIとIDE拡張機能(VS Codeなどに対応)により、ローカル環境とクラウド環境間でシームレスに作業を移行できます。コンテキストが途切れないため、作業効率が劇的に向上します。

さらに、Codex画像やスクリーンショットを入力として受け付けるようになりました。これにより、フロントエンドのデザイン仕様やUIバグなどを視覚的にAIへ共有し、フロントエンドタスクの解決を効率化します。また、GitHub連携によりPRの自動レビューや編集指示も可能です。

安全性確保のため、Codexはデフォルトでサンドボックス環境で実行され、ネットワークアクセスは無効です。プロンプトインジェクションリスクを軽減するとともに、開発者セキュリティ設定をカスタマイズし、リスク許容度に応じて運用することが可能です。

AI普及、所得相関で地域差鮮明:企業は自動化を優先

企業API利用の核心

企業API利用は77%が自動化(Automation)。
用途はコーディングと事務管理に集中。
導入決定要因はコストより経済価値を重視。
複雑なAI導入の鍵は組織のコンテキスト整備

世界・米国での普及状況

国別利用指数は所得水準と強く相関。
高普及国はAIを協調(Augmentation)で利用。
米国ではワシントンDCとユタ州が高利用率

コンシューマー利用の変化

教育・科学分野の利用比率が顕著に増加
ユーザーのAIへのタスク委任(指示)が急伸。

Anthropicが公開した最新の経済インデックスレポートによると、AIモデル「Claude」の企業利用は急速に拡大し、その利用パターンの77%がタスクの「自動化」に集中していることが判明しました。これは、コンシューマー利用における自動化と拡張(協調)の比率がほぼ半々であるのに対し、企業がAIをシステムに組み込む際に生産性向上を目的とした委任を強く志向していることを示しています。一方で、AIの普及率は国や地域によって大きく異なり、所得水準と強く相関する不均一性が鮮明になっています。

企業によるAPI利用は、コンシューマー利用と比べ、特にコーディングや事務管理タスクに特化しています。注目すべきは、企業がAI導入を決定する際、APIの利用コストよりもモデルの能力や自動化によって得られる経済的価値を重視している点です。実際、高コストなタスクほど利用頻度が高い傾向が見られ、これは経営層がAIを単なるコスト削減ツールではなく、事業価値を最大化する戦略的資源と見なしていることを示唆します。

AIの普及には地理的な偏りが明確です。Anthropic AI Usage Index(AUI)を見ると、イスラエルやシンガポールといった高所得で技術力の高い国々が人口比で予想される水準を大きく上回る利用率を示しています。逆に、インドやナイジェリアなどの新興経済国では利用率が低迷しています。AIによる生産性向上の恩恵が既に豊かな地域に集中する可能性があり、この不均一性が世界の経済格差を拡大させるリスクがある点が指摘されています。

企業が複雑で高度なタスクにAIを適用しようとする場合、適切なコンテキスト情報へのアクセスが大きなボトルネックとなっています。複雑なタスクほどモデルに提供される入力(コンテキスト)が長くなる傾向があり、企業は社内に分散している専門知識やデータを集約・デジタル化するための組織的な投資を求められています。このデータモダナイゼーションが、AI導入の成否を分ける重要な鍵となります。

コンシューマー向けClaude.aiの利用トレンドでは、コーディングが依然として最多ですが、教育・科学といった知識集約型の分野での利用比率が急速に伸びています。また、ユーザーがAIにタスクを丸ごと任せる「指示的(Directive)」な自動化パターンが急増し、この8ヶ月間で自動化の割合が拡張(Augmentation)を初めて上回りました。これはモデル能力の向上と、ユーザーのAIに対する信頼感が高まっていることの裏付けです。

興味深いことに、AI普及率が高い国では、タスクの自動化ではなく人間とAIの協調(Augmentation)を志向する利用パターンが相対的に多いことが分かりました。一方で普及途上の国では、まず自動化から導入が進む傾向があります。この違いは、単なるAI導入のスピードだけでなく、その利用方法や労働市場への影響が地域ごとに異なる可能性を示しており、政策立案者や企業は地域特性に応じたAI戦略を練る必要があります。